
AD-RI59 9% THE FORMAL SPECIFICATION OF A VISUAL DISPLAY DEVICE: 1/3
DESIGN AND IMPLEMENTATION(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA J E HUNTER JUN 85

UNCLASSIFIED F/G 14/2 ML

I AA

12.

11111 11.682

.9111IL 511.

MICROCOPY RESOLUTION TEST CHART
NATIONAL &9*14U OF STAN'DARDS -0963-A

.9%

4e

KNAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
THE FORMAL SPECIFICATION OF A

VISUAL DISPLAY DEVICE:
DESIGN AND IMPLEMENTATION

I00
°

by

James E. Hunter
clr

. June 1985 SEP 13 9

Thesis Advisor: Daniel L. Davis

Approved for public release; distribution is unlimited

85 9 10 U2L

SIECURITY CLASSIFICATION Of THIS PAGE (When" D4811 Entered) r________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DMMETATIN PGE-BEFORE COMPLETING FORM

N PR NMUE 2.GOVT ACC1EhION NA 3. RC ENT'S CATALOG MUMMER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERICO COVERED

tThe Formal Specification of a Visual Master's Thesis
Display Device: Design and Implementation June 1985

S. PERFORMING ORG. REPORT NUMBER

7. AUTOR~q)8. CONTRACT OR GRANT MUMS ER(s)

9. PERFORMING ORGANIZATION MAMIE AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
ARA & WORK UIT NUMBERS

Naval Postgraduate School
Monterey, CA 93943-

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate SchoolJue18
1.NUMBER Ols PAGES

Monterey, CA 9394323

14. MONITORING AGENCY NAME A AODRESS(i1 different fro Confirollnd Office) IS. SECURITY CLASS. (of this report)

Unclassi.fied

So.* DECLASSIFICATION/ DOWNGRADING

IS. 01ST RI O TI ON ST AT EMEN T (of thi a Report)

Approved for public release; distribution is unl wt-ke&~lf o

NTIS GRA&I
DTIC TAB

I7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from, Report) utfiao

Dustribiction-

IS. SUPPLEMENTARY NOTES Availability Code~s
JAvail and/or

DistI Special

9. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

,'Abstraction~ yecification; algebraic,' interface; r;esoce
image data ty e point block transfer.' bit-mapped display;
portability. c

20. ABSTRACT (Continue on rev-,e- aIde It necessary and Identify by block number)

The visual display is usually treated as a separate 1/0 device.
The interface to the programmer is at a low conceptual level
and vaguely defined. Software that uses sophisticated displays
are notoriously non-portable. In this study, we apply tech-
niques using an axiom specification method to design, specify,
and implement the resources of a bit-mapped color display device
which is fully integrated with an abstract processor (Continued)

DD I Fj0.1. 1473 EDI TION OF I NOV 65 IS OBSOLETE

S N 0 102- L. 0 14- 6601 1 SECURITY CLASSIFICATION OF TIS PAGE (Maen Date Entered)

SSCUMTV CLASS ICATION OF THIS PAGE ru,, O& .MWO

ABSTRACT (Continued)*--

* called AM.- In conjunction, we provide a precise and high c~n-

ceptual interface to the resource to facilitate image programming.

S, N 0 102- LF-O0l14-6601

2 5ECUMITV CLASSIICAT101W OP THIS8 PAGEIWMe. D816 EneWOV6

Approved for public release, distribution unlimited

The Formal Specification of a Visual Display Device:
Design and Implementation

by

James E. Hunter
Lieutenant Commander, United States Navy

B.S., Pennsylvania State University, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1985

Author: .
/" James E. Hunter

Approved by:
Daniel L. Davis, Thesis Advisor

Micl~ael yd', eader

Bruce J. MacLennan, Chairman,
Department of Computer Science

K neale T. M aW' M - - -A-
Dean of Information and Policy Scienc .

3°

ABSTRACT

" - The visual display is usually treated as a separate I/0 device. The interface

to the programmer is at a low c(ceputal level and vaguely defined. Software

that uses sophisticated displays (; notoriously non-portable. In thisdyudy, we

apply techniques using an axiom specification method to design, specify, and

implement the resources of a bit-mapped. color display device which is fully

integrated with an abstract processor called AM , In conjunction, we provide a

precise and high conceptual interface to the, resource to facilitate image

programming. K, -

4 /

. . . -.

. . . .
. ,.. S

TABLE OF CONTENTS

I. INTRODUCTION ... 9
A. THE PORTABILITY PROBLEM 9

1. A bstraction ... 10
2. The Sem antic Gap .. 11

B. THREE WAYS TO NARROW THE SEMANTIC GAP 12
1. Form alism ... 12
2. Representation Independence 12
3. Intent Expressive Resource Abstraction 13

C. M ETHODOLOGY ... 13
II. " THEORY ... 15

A. ALGEBRAIC SPECIFICATION 16
1. Syntactic Specifications ... 16
2. Semantic Specification .. 16
3. Error Handling ... 19

III. D ESIG N ISSU ES .. 23
A. BASIC GRAPHICS PRINCIPLES 23

1. A Simple Graphics Package 23
2. The AM Display Resource 26

B. THE PHYSICAL RESOURCE ... 28
C . IN TERFACES .. 28

IV. THE SPECIFICATION LANGUAGE .. 31
A. THE GRAM M AR ... 31
B. THE MACRO PREPROCESSOR 34

V . T H E D ESIG N .. . 37
A. THE IMAGE CONCEPT ... 37
B. ABSTRACT IMAGE DATA TYPES 40

1. Intensity and Color ... 41
2. Spatial Reference ... 43
3. Forms............... 45
4. F onts 47

C. POINT BLOCK TRANSFER .. 50
1. The Correspondence Function 51
2. M asks .. . 54
3. Com bination Rules .. 56
4. Other Pntblktrans Operations 58

D. THE BIT-MAPPED DISPLAY RESOURCE 59

5

q *~~**~**.-.

1. Background on the Processor Resource 59

2. The Display Registers and Window 60
3. The Monitor and Its Attributes 61
4. Portability Issues .. 62

VI. IM PLEM ENTATION ... 65
A. IMPLEMENTING DATA TYPES 66

B. MAPPING OPERATORS TO FUNCTIONS 70
C. ERROR HANDLING .. 70
D . EX ECUTION ... 72
E. DISPLAY IMPLEMENTATION ISSUES 76

VII. CO NCLU SIO NS ... 80

APPENDIX A: THE ALGEBRAIC SPECIFICATION GRAMMER ... 82

APPENDIX B: THE SPECIFICATION FOR AM (version 2.0) 85
APPENDIX C: A SIMPLE ASSEMBLER FOR AM 160
LIST OF REFEREN CES ... 236
INITIAL DISTRIBUTION LIST ... 238

.i.'

ii'6

LIST OF FIGURES

2.1 Example of an Incomplete Spec ... 17

2.2 Specs for the Abstract Types Bag and Set .. 18

2.3 A Simple Spec for Natural ... 19

3.1 SGP Block Diagram ... 24

3.2 SGP Block Diagram on AM Resource ... 27

3.3 A Spec for Abstract Type Boolean ... 29

5.1 W orking Rectangles and Target Area .. 52

5.2 Disjoint Seams form the M asking Rule .. 56

5.3 Combination Rules .. 57

6.1 Type Definitions for Natural ... 66

6.2 M achine Values .. 68

6.3 The Physical Resource .. 69

6.4 Operator-Function M appings ... 71

6.5 Error Handling .. 72

6.6 Program Execution .. 73

6.7 The Semantics for mov m m ... 75

6.8 Type Defintions for Form .. 78

7

'. .. ,, ..- - . *'- .-. ..- . -.. .. ,. ... _.. ., .. . - .- - ,, - . .-. ... -. -.. -. ,- ,, • .

ACKNOWLEDGMENTS

I would like to thank the following people:

- Professor David L. Davis for his encouragement and guidance.

-My wife, Lydia, and my children, Bethany and Todd, for their great
patience, understanding, and wonderful love.

8

I. INTRODUCTION

This thesis investigates the characteristics of the bit-mapped display device

in order to define, specify, and implement a useful abstraction of this type of

resource. A formal specification methodology is demonstrated that captures this

abstraction in a precise yet readable manner. This research is an extension of the

work begun by Yurchak (1984). That work dealt with the specification and

implementation of an abstract machine we call AM.

AM (version 1.0) is the realization of an abstract processor together with its

memory and primitive data types. AM (version 2.0) is derived from version 1.0

with the addition of the data types necessary to represent the abstraction of the

bit-mapped display resource. It should be noted that the display resource is not

viewed in this work as a peripheral detice but is considered to be an integral part

of the processor.

This research has two goals:

- Investigate and formulate an abstraction of the bit-mapped display resource
with a useful set of abstract data types and operations.

- Demonstrate the feasibility of using the resource specification method to
precisely describe a computing system by extending an existing processor's
resource specification to include the display resource.

The following is a modification of the introduction presented by Yurchak (1984).

The background and motivation for this research remains unchanged from that

study.

A. THE PORTABILITY PROBLEM

It is well known that porting large programs from one machine to another is

an expensive ordeal. It is also well known that once the software has been moved

to the new machine, it is anybody's guess whether or not it will work as before'.

Even if our program seems to work, we may find it consumes more resources than

we expected. Indeed. this may be just as bad as if it did not work at all.

'We assume, probably unjustifiably. that it worked correctly before we tried to move it.

9

• -.. ,,.:--,..,.. -. .-......-......-............... , :.., ,....:.... .-. .-.........--

There are a number of reasons why the portability problem is getting worse,

not better:

-Most architectures, even those which profess to be "language directed",
reflect a bias toward making the machine look like what the programmer
wants, or toward some engineering goal, such as maximizing the number of
devices.

- Both languages and machines are related to the data they manipulate in an
implementation dependent way.

-Language and hardware designers pursue their conflicting goals to the
detriment of the poor compiler writer, who, with imprecise tools and
methodologies is faced with the job of implementing ambiguous semantics on
an informally designed resource.

Although these and other factors do adversely contribute to the imperfect task of

moving software from one machine to another, they adJ their weight to other

difficult issues in language design, computer archite: 4,ire and software

engineering. This study confines itself to treating the issues surrounding the

interaction between the programmer's view of the world as a problem, and the

architect 's view of the world as a resource.

1. Abstraction

Abstraction describes the separation of the defining properties of an

object from other, unnecessary details about it. A programmer is primarily

concerned with solving a problem. Appropriately, the tools at his disposal,

programming languages, development aids, the programming environment, form

a problem solving abstraction. The hardware (and some of the software) on which

this problem solving abstraction is implemented, however, is an abstraction of a

different sort. Addresses, registers, ports, most of the operating system service

routines, all provide more or less efficient ways to manipulate the physical

resources of the machine -- they form a physical resource abstraction.

The fuzzy area between these two abstractions, sometimes simplistically

perceived as the boundary between hardware and software, exposes a number of

shortcomings in language design and computer architecture collectively termed

the semantic gap.

Proper resource abstraction is essential for effective work in the

portability problem area. In Davis (1985), Davis notes that implementors have

10

--. -w 71 ml -. 1

been reasonably successful building systems which promote portability when the

resource in question has a clear model or abstraction. The file system is the

prime example. Many operating systems (OS), such as UNIX or CP/M, provide

a uniform, abstract, functional interface to the services of this resource.

Other areas are more difficult to abstract. Processors and visual displays

are examples. The inability to establish a meaningful abstraction has impeded

the formation of standard functional interfaces to these resources. OS's generally

do not provide a functional interface to either the processor or the display2.

Programs which access these resources directly, simply are not portable. High

level languages (HLL) partially fill the gap left by OS's for the processor resource.

Unfortunately, the interface level is high enough to force many applications to

bypass the HLL for efficiency. Special. graphics packages that extend the

operating system provide similar services for the display resource. But despite

these efforts, the problem is far from solved. The lack of a formal means to

specify the interface that the OS's, HLL's and graphics packages attempt to

provide is a serious shortcoming that impedes portability.

2. The Semantic Gap

The semantic gap manifests itself anywhere a problem solving abstraction

touches a physical resource abstraction. A detailed description may be found in

Myers (1982). He observes that the semantic gap contributes to the cost of

software development, software unreliability, inefficiency, complexity, and the

distortion of programming languages. Certainly no single development or

methodology will eliminate this problem.

Narrowing the semantic gap requires significant changes in the

fundamentals of computer architecture and language design. We chose to

concentrate on three factors which significantly contribute to this problem:

- Informally described semantics.

- Representation dependent data types.

- Arbitrarily designed instruction set architectures.

2 Except in the most rudimentary way. OS function calls to the display are usually limited to
character and string output.

..

i . .= o -° ° - o .° , o ~ o = =, o ° ° ° . ° - - - ..- - - - °. °. . . - .. -. ° - J

-._ .. -. . -. .+. , .-.. . t +: .*_.t,... - . -... . -. b + -.. - •- , ,- ,.+

The implication, of course, is that through increased formalism, the introduction

of representation independent data, and a more thoughtful treatment of the

instruction set, the semantic gap can be narrowed. The balance of this thesis is

devoted to describing a methodology for doing just that.

B. THREE WAYS TO NARROW THE SEMANTIC GAP

1. Formalism

The benefits of formalism in the design process have been amply revealed

in countless articles treating this issue from the standpoint of software

engineering. Our concern will be. limited to formalism as it applies to the

specification of an abstraction. Various specification methodologies exist, many

of which have been used with more or less success in projects of practical

significance. But we caution the reader that by "formal" we mean a

mathematical rigor rooted in proven theory. The idea of formalism as often

applied to software engineering will not do here. A formal specification is a

complete description of the meaning of an object. It forms the basis for an

abstraction and is ultimately a bridge over the semantic gap.

The benefits of formalism in which we are most interested are:

- It provides a firm basis for proving our assertions about a specification and
its implementation.

- It encourages a discipline on the part of the designer to be rigorously precise.

- It compels us to find ways of describing things which are representation
(implementation) independent.

2. Representation Independence

Conventional machines force us, as programmers, to develop our own

abstractions of data. At a time when we are most concerned with developing

clean algorithms the architecture obligates us to worry about status registers and

word length. Certainly someone must ultimately deal with these physical

properties of the hardware, but this should not fall as an obligation the upon

programmer. The programmer should be free to ignore unnecessary detail.

Displays are equally difficult. Often the programmer is forced to deal

with display data at a very low level. In order to create his display, it may be

necessary for him to work at the level of poking bits out the processor port to the

12

.+ -j ,.,... +.... . - ' > * -,. .. , . .-

-terminal. By defining data types that include objects which represent concepts

appropriate to visual display processing, the programmer will be freed to work at

a higher conceptual level.

We will attempt to minimize the dependence of data upon its

representation through the use of abstract data types. Our notion of data is very

general. It ranges from integers, to image objects, and to program instructions.

Data type representation will be hidden and abstract operations will be provided

in the same way as with traditional abstract data types. If these data types can

be kept representation independent, then portability is aided.

3. Intent Expressive Resource Abstraction

Conventional architectures do not permit us to unambiguously express

our intent in a program. Artificial data types combined with typical resource

models force ambiguity an4 the overloading of data structures. Stack frames are

a good example of this. The semantics of the frame combine those of an array

and those of a stack. Meanwhile, the whole thing is implemented in memory,

with the data types overlaid on an array of fixed length cells.

We claim that applying methods similar to those used to describe

abstract data types, we can describe an abstraction of the physical resources of a

machine which benefits not only from the formalism used to specify it, but also

permits the implementor to clearly interpret the intent of programs written for it,

thus improving the efficiency of implementations.

C. METHODOLOGY

The goal of this research is to contribute something of practical significance

to the study of software portability by treating an area which has been largely

ignored -- the design of a formal abstraction for the computing machine itself.

We have innumerable high level programming languages, programming

environments, graphics languages, database machines, file systems, operating

system command interpreters, a whole host of different abstractions tailored to

the task of providing us with just enough information to do everything we need

to do, and nothing more. So why, then, have we failed to develop abstractions

for the hardware resources, upon which we are so dependent, which are more

than just a collection of registers, opcodes and some arbitrary rules about how

13

V.i

•A .A
a.-,.-..-., "-,

they interact. A more difficult but certainly more important task than actually

defining the abstraction is developing a methodology for producing other resource

abstractions.

Our method has been to take a naive approach toward all areas of the design

and implementation process not directly related to the specification itself. We do

this for two reasons. First, we can take for granted the large body of research in

programming languages and computer architecture -- we are designing neither a

* language nor a processor, even though ad hoc examples were required to complete

the implementation. Second, the research is intended to benefit programmers.

Since it is unreasonable to expect those who may use this method to understand

the-theory behind the specification, the key to understanding the reasons for our

design decisions lies in the way we coded it. Thus, cleverness has been eschewed

in favor of clarity.

* Our task in this thesis, then, is to examine a wide range of issues which

- impinge on the process of designing and implementing the specification of a

machine, and then to describe how we went about actually doing it.

14

II. THEORY

The formal specification method used to specify the AM machine is based on

algebraic semantics. In Davis (1985), it is argued that resource abstraction is

very similar to data type abstraction. In fact, to describe the computing

resource, requires specification of both physical resources and data types. Guttag

(1980) states that to describe an abstract data type precisely, the specification

must embody the semantics in addition to the syntax.

A formal specification must meet the following criteria if it is to be useful

Guttag(1980):

- It must be restrictive enough to ensure that nothing unacceptable to the
specifier will meet the requirements imposed by the specification.

- It must also be sufficiently general to ensure that few, if any, acceptable
entries are precluded.

- It must be usable. The people that must deal with the specification must be
able to understand it.

The latter point has precluded previous methods that would be otherwise

acceptable.

From Yurchak (1984), we note that to achieve true portability, we must be

able to demonstrate the following properties in our implementation:

-The specified semantics actually implemented on the source machine are
completely unambiguous.

- The implementation on the source machine is "correct".

Thus, our method of specification must be formal enough to permit proofs of

correctness. Although the knowledgeable reader will know that the provability of

usefully complex specifications has so far been unrealized, research conducted in

parallel with this study (Griffin 1984) has given us reason to be optimistic.

Algebraic specifications meet the above criteria. Here we find a significant

body of research already in place in the area of abstract data type specification.

Goguen (1978) and Guttag (1978) treat this topic in great detail. We will not do
d

15

.. . ..

so here. Instead we give an overview of the important concepts of abstract data

types, and direct the reader to the original works for a more in depth study of

the -underlying theory. Davis (1984) provides the theoretical basis for the

resource specification method. Davis (1985) provides additional background but

with an emphasis on practical issues.

A. ALGEBRAIC SPECIFICATION

An algebraic specification of an abstract data type consists of two parts: a

syntactic specification and a semantic specification. The syntactic specification

provides syntactic and type checking information. The semantic specification is a

set, of axioms that define the meaning of the operations by stating their

relationships to each other.

1. Syntactic Specifications

The syntactic specification identifies the list of operations that are

provided by an abstract data type. The number and types of the operands used

by an operator is specified as well as the return type. The operators and operand

types are usually given, what is hoped to be, meaningful names. Unfortunately,

when a reader encounters a name he recognizes, he tends to assume that the

object has the properties he associates with that name. At first glance* this type

of specification seems to be adequate.

To illustrate this fallacy, consider the specification in Figure 2.1 of the

type queue (of integers) from Guttag (1980). Note that this specification can be

converted to represent type stack by replacing queue with stack, add with push,

front with top, and remove with pop. It is now apparent that the perceived

semantics of this example is conveyed solely by our personal understanding of

words such as add, front, queue, etc. The importance of the semantic

specification is now evident.

2. Semantic Specification

The semantics of the data type are precisely specified by a set of axioms.

The specification language itself consists of five primitives: the functional

composition, the equality relation (=), two distinct constants (true and false),

and an unbounded supply of free variables. From these, other constructs such as

the if-then-else can be created. Figure 2.2 illustrates how the axioms are used to

%• , 16

• .,.- ' . .. * - ,: .* .,:, .w .. , - 5,- . . .,. , . ,.,,, - ., . .,..-- --., . .

spec queuetype
is

sort
queue;

primitive
op,

new: - queue;
Add: queue,integer -queue;
front: queue - queue;

* remove: queue - integer;
isexnpty: queue -~ boolean;

end queuetype;

Figure 2.1: Example of an Incomplete Spec

1L7

spec bagtype
is

sort
bag;

primitive op
empty__bag: bag;
insert: bag,Int - bag;
delete: bag,Int - bag;
ismernber. bag,Int-.bool;

axiom
1) ismember(empty_b agox) = false;
2) if x =y

then ismember(insert(sx),y) =true;

else ismember (insert (s ,x) ,y) =ismember(s,y);

3) delete(empty bagox) = empty__bago;
4) if x y

then delete(insert(b,x),y) b;
else delete (insert (b ,x) ,y) =insert (delete (b ,y) ,x);

end bagtype;

spec settype
is

sort
set,

primitive op
empty set: -. set;
insert: set,Int - set;
delete: set,Int - set;
ismember: set,Int - bool;

axiom
1) ismember(empty seto,x) = false;
2) if x= y

then ismember(insert (s,x) ,y) = true;
else isinember (insert (s .x) ,y) = ismember(s,y);

3) delete(empty seto,x) = empty_s eto;
4) if x =y

then delete (insert (s,x) .y) =delete (s,y);
else delete (insert (s,x) .y) =insert (delete (s,y) ,x);

5, end settype;

Figure 2.2; Specs for the Abstract Types Bag and Set

618

precisely describe the semantics. Notice that the syntactic specifications are

identical. The semantic specifications are also identical except for the then clause

of axiom 4. These specifications point out the similarities and isolate the one

crucial difference between the two types. While some of these axioms may

require some thought to realize what idea they are conveying, they are reasonably

understandable to an experienced programmer.

One must exercise care to avoid interjecting inconsistencies into the

axioms that would permit the axioms to be combined in ways that would

produce results such as true() - false() which, of course, is nonsense.

Additionally, the set of axioms must be complete enough to exclude any

unacceptable implementations of the data type. The completeness problem is

difficult one. It is beyond the scope of this discussion and the reader is referred to

Guttag (1980).

3. Error Handling

In any specification of interesting complexity, the user has the potential

to combine operations in a sequence that causes an error. How the errors are

handled is an important aspect of the specification. Two implementations of the

spec natural
is

sort
nat;

primitive
op

zeronat: -. nat;
prednat: nat -. nat;
succnat: nat - nat;

axiom
prednat(succnat(n)) = n;
succnat(prednat(n)) = n;

end natural;

Figure 2.3: A Simple Spec for Natural

19

specification can not be equivalent if they respond differently to errors. Consider

the simple specification for natural in Figure 2.3 which is limited to only counting

operations. The natural number "0" is represented by the constant 3 zeronat 0 .

Since the natural number zero has no predecessor,

prednat(zeronat0)

". is obviously an error.

The following points are applicable to the error handling issue:

- Any operation which encounters an error is computationally meaningless.

- If an operation encounters an error, then any subsequent operation which
utilizes the errant result must also return an error.

- Errors must not be hidden; they must be made known to the user.

One approach that was used in Yurchak (1984) and Goguen (1977), is to

use a class of operators called error operators. With this method, the operator

class:

error
op

naterror: - nat;

is added to the spec natural in Figure 2.3. The effect is to create a constant that
*1

represents each specific error. This constant is the same type that the operation

normally returns and becomes the return value for the illegal operation. One

advantage, is that the occurence of an error is not only recognized but the

specific type is known.

On a practical level, this approach causes the number of axioms to

explode for even moderately complex specifications involving error operators.

Since naterror() is a legal nat type, it can be substituted into any free variable of

type nat. The specification writer- must now specify the meaning of using

naterror() in each operation which uses nat as an operand. For our spec

natural the axioms

1Really a 0 -ary operator.

20

.

' 7e-rro 7 -7trr Io

prednat(naterrorO) = naterrorO;succnat(naterrorO) -- naterrorO;

must be added. Similar axioms are required for any other operations involving

nat. The explosion really occurs when spee natural is extended by other

specifications that introduce new sorts that also use nat operands.

For this reason, we have abandoned this approach and introduce the

concept of undefined. Undefined has the following semantics:

- Any illegal operation is undef.

- If t = undef then A (zl,X2,...,t,...zXn)=undef

* where A is any operator in the specification, and z, is an expression.

- Any equation involving undef is meaningless.

- Whenever undef is encountered, the processing halts immediately and an
appropriate error message is issued.

This method keeps the number of additional axioms needed for errors

manageable. Consider again our spec natural in Figure 2.3. Adding the axiom:

prednat(zeronat0) = undef;

solves the predecessor of zero problem without introducing an error operator or

constant.

The effect is to restrict to range of free variables that apply to an axiom.

For instance, if zeronat() is substituted for the free variable n , then the axiom

succnat(prednat(n)) n;

evaluates to

succnat(prednat(zeronat())) = zeronat();
succnat(undef) = zeronato:

undef = zeronat();

This implies that the above axiom applies to all free variables except

n = zeronatO.

One short coming of this method is that different error handling

philosophies can not be easily expressed. Goguen (1978) proposes several ways

for handling this problem. but without much success for the practical application.

Continued research in this area is needed.

21

21 . ,

It is important to understand the difference between undefined and not

implemented. Obviously, any actual machine will be finite despite the fact that

our specification includes several infinite sets of objects, spee integer for

example. In fact, the processor resource is, itself, described as infinite. Spec

memaddress contains a starting memory address for each memory segment but

has no bound on the size of each segment nor even the number of segments! One

might expect an axiom to describe that referencing a memory address beyond the

last available address is undefined.

The memory size in the specification is not bounded for the same reasons

that integer is unbounded. Conceptually, there is no natural limitation on the

size of memory. Any implementation, of course, will be limited in memory and in

the range of integers it can process. Any instruction which references a non-

existent memory location will generate an appropriate error. The distinction is

that such an instruction is not implemented rather than undefined. On a larger

machine, the same instruction may be permitted. Note the difference from a

truly undefined operation such as pop(emptl stack) which is conceptually

meaningless and an error in all implementations.

22

-,A

7777

III. DESIGN ISSUES

Before the display resource can be specified, a useful abstraction of this

resource must be formed. In order to formulate this abstraction, an

understanding of the basic principles and environment under which the

programmer operates is required. This abstraction should support the

programmer and encourage him to work at a high conceptual level. He should

think about and manipulate "image. objects" rather than just dots and lines. A

poor abstraction of the resource will doom the design from the outset. We now

take a look at how current graphics systems approach the programming task.

A. BASIC GRAPHICS PRINCIPLES

One of the first problems we encounter in display programming on many

systems, is the difference between a graphics and a character display. In many

implementations, they are mutually exclusive operations. Conceptually, it

depends on your point of view as to whether they are really the same or different.

In the broadest sense, character display is just one instance to the more general

graphics problem of creating images on a screen. The differences have arisen in

an effort by implementations to speed up the very common task of character

display. Graphics is inherently a computationally bound task when one considers

the number of points on the screen which must be manipulated. Hardware is

often provided to capitalize on the specialized characteristics of the character

display. This enables text to be rapidly presented, moved and scrolled. But the

general graphics problem is sometimes complicated by the non-regularity of this

approach. Further, the existence of the character display hardware may actually

hinder general graphics display. Our approach is to consider character display to

be a subset of the more general problem of graphics display.

1. A Simple Graphics Package

To understand where and how the AM display resource fits into the

overall scheme, we will describe a traditional graphics system. The system we will

consider is taken from Foley (1984) and is called the Simple Graphics Package

23

-''.-'''..''. \ .'''.-: .'''.,' -. ''.-'''.". '-. ' .- "'.. "'-,': '*' -'''.-?' '',-:'", '.- : '. "'': '."-.. " " ... "".. .'".-" . .. '.-"'---.." .

(SGP). This system is representative of many existing packages. SGP is an

interactive system which handles both input and output. We intend to simplify

the system and discuss only the functional aspects of the output that are

pertinent to this research. Figure 3.1 depicts our view of the conceptual block

diagram for the SGP system.

The SGP model breaks software into three components, the application

data structure, the application program, and the graphics system. The

application data structure is used to model display objects. It holds the

description that is needed to describe an object visually. The form of this

information is usually geometric coordinate data, object attributes such as surface

color, and connectivity relationships. The coordinate data of the model is usually

expressed in world coordinates (WC) using whatever units are natural to the

application. World coordinates are essentially unbounded.

The application program builds and maintains the object data structure.

To view the object, the program interprets the object data structure and issues

appropriate calls to the graphics system interface. These calls are graphic output

"-" IPhysical

Coordinates
'"Appl IW Viewing ND DPU DPU

Ops -- So Code Display

Prog I Processor Generator Prog

A" Hfar dwar e - - - - - - - --: ~~AttributeInef e
AplSettingsInefc

•-Data ISGP DPU'Interface
"Model I

Figure 3.1: SGP Block Diagram

24

primitives. Graphics output primitives are essentially a high level language that

is machine independent. Typical primitives are points, lines, and polygons

expressed in 2D or 3D world coordinates.

Conceptually, SGP is divided into two major modules. The first is the

viewing operations processor. This module transforms the object's visual image in

a number of ways. It provides translation, scaling, rotation, and perspective

operations. The application program provides this module with a specification

that describes the region of interest and the desired perspective expressed in WC.

Then, as the program submits its description of the object in the form of output

primitives, the viewing device processor transforms the input to create the desired

perspective.

The total transformation is a series of several smaller steps. For 2D

graphics, the program specifies a window and viewport. As the SGP receives

primitives from the program, they are checked against this window definition.

Any portion of the primitive that falls outside the window is clipped. The image

of the window is then mapped onto the viewport. The viewport is described in

terms of the display screen. It may cover the entire screen or any rectangular

portion. Each axis of the window is scaled to fully occupy the corresponding axis

of the viewport, thus, the aspect ratio is not necessarily preserved during this

mapping. Use of the translation, scaling and rotation operations, frees the

application program from recomputing the object model in a new position. The

desired operation is passed to the viewing operations processor and the original

object description is submitted. The viewing operations processor makes the

necessary adjustments. Thus, a series of transformations can be accomplished

without changing the data structure representation of the model. Only the

transformation specification must be modified.

Several additional operations are needed for 3D graphics. A view volume

is specified in addition to the window and viewport. Clipping is performed

against this volume. The mapping from 3D to 2D requires a projection

operation. SGP provides several types of projections which fall into two basic

classes: perspective and parallel. After the clipped volume is projected onto the

window, the window is mapped onto the viewport as before.

25

With the exception of specifying the location and size of the viewport on

the screen, all application program work is done in WC with no regard to the

physical device which ultimately responds to the primitives. During the

transformations, the viewing operations processor converts the WC to normalized

device corrdinatea (NDC) based on the viewport specification. NDC ranges from

0 to 1 relative to the physical device's screen boundaries. The transformed

primitives which are now expressed in NDC are then passed to the second major

module of SGP, the display processor unit (DPU) code generator.

The DPU code generator accepts NDC primitives from the viewing

operations processor, which are still device independent, and converts them into a

equivalent series of device-dependent hardware instructions expressed in the

physical device coordinates for the the target DPU. Attribute primitives which

do not involve coordinates are received by the code generator directly from the

application program. Foley (1984) uses a paradigm to describe the DPU code

generator as a "display program compiler" which generates code from a machine

independent high level language into a low level code for a specific DPU. Note

that the compilation of DPU code occurs during runtime as the application

program issues output primitives.

2. The AM Display Resource

The AM display resource replaces three of the items in Figure 3.1, the

DPU code generator, DPU display program, and the DPU. Figure 3.2 shows the

block diagram for a graphics system using AM. AM's drawing primitives are

slightly more low level than SGP and are limited to point, line, and fill rectangle.

On the other hand, AM has several data structures which permit whole images to
be manipulated, copied and moved. They are designed to encourage the

programmer to think and work at a high conceptual level. The use of these data

structures with their defined operations, give the programmer a very powerful

instructions set.

Like the DPU code generator in SGP, the AM interface accepts

primitives in NDC and is machine independent. Unlike SGP, the NDC range is

from 0 to 9999 rather than 0 to 1. The AM NDC system is equivalent to SGP's

26

Appl A C [S i e ing

Data 0 Ops AM
Model Po Processor I

I Attribute I
SPSettings L

.Interface Interface

Figure 3.2: SGP Block Diagram on AM Resource

but is more convenient to capture the programmer's intent, a concept that will
be amplified later.

AM does have window and clipping operations. However, these

operations are conceptually quite different from the SGP primitives.

Conceptually, images may be larger that the display screen. AM's window

represents the fixed size of the display screen and can be thought of as a framing

mat that can be positioned over a picture that may or may not be larger than its

opening. With this idea and recalling that AM's input primitives are expressed

in NDC rather than WC, it should be apparent that AM is not intended nor

capable of transforming portions of a model expressed in WC. AM does not have

a projection capability nor translation, scaling, or rotation transformations.

These operations are not considered appropriate for this abstraction level. The

idea is to model the display resource, which is a flat screen that projects an

image. The construction of an image from the model of a 2D or 3D object is best

left to an application program running on SGP which in turn runs on AM. In

this scenario, the SGP would be used to create the machine independent image

which any AM hosted machine could faithfully display.

27

In- general, most applications have no need to create images from a data

structure representing an object. Applications of this type directly construct a

screen image without the services of a graphics package. AM is very well suited

for this type of application as well. In fact, the image data type permits a

programmer to built complex images with minimal effort.

B. THE PHYSICAL RESOURCE

When one is asked to point to the visual display resource of a computing

system, he is likely to indicate that the "TV" like component with- the CRT

screen is the central part of the resource. But from the programmers perspective,

the bit-map which stores the image information is the heart. The CRT with its

display screen is merely a magnifying glass that is passed over the memory

containing the bit-map. The CRT allows us to see that portion of the memory

contents under the magnifying glass. The programmer doesn't program the CRT.

The image projected onto the screen is a side effect of memory manipulation. In

summary, the display resource for our purposes, consists of the display memory

plus any programmable memory cell or register, which controls attributes that

affect the projected screen image.

In AM, images are considered abstract data types. Conceptually, image

display is accomplished in the following way. The image object is initially stored

in memory. To alter it, it is first fetched from its memory location. This image

is then used as an operand in some image operation. The resultant image object

is then stored back into memory. At any instance, the memory may contain

several image objects. The terminal is directed to view a selected image in the

context of the current terminal attribute set. This attribute set includes items

such as background color and other items needed by the programmer. The

attribute set also includes informational items concerning terminal characteristics

that the programmer may need, such as the screen dimensions and the physical

number of pixels. Applications would not normally alter terminal characteristics.

but a configure type utility for an operating system would need to update these

when hardware changes are made.

.8

*. 28

-"k~
.5 * . .%5 - - . - . - * * .

. ~. - %7 - --- - - - - - - .

C. INTERFACES

The purpose of abstracting and specifying the computing resource is to

permit construction of equivalent instantiations of the specification on different

hardware resources. Aside from the limitations on the practicality of proofs of

correctness, each implementation can be checked to be a correct instantiation of

the specification. Such implementations are provably equivalent, Davis (1985).

It is startling to realize that each of these equivalent implementations may have

spec boolean
is

sort
bool;

primitive
op

true: -. bool;
false: -. bool;
not: bool -. bool;
and: bool,bool -. bool;

derived
op

or: bool,bool -. bool;
implies: bool,bool -- bool;

derived
def

or(bl,b2) = not(and(not(bl),not(b2)));
implies(bl,b2) = not(and(bl,not(b2)));

axiom
falseo = not(trueo);
not(not(b)) = b;
and(trueo,b) b;
and(falseo,b) = falseo;
commutative(and,bool):

end boolean;

Figure 3.3: A Spec for Abstract Type Boolean

29

................................

different user interfaces! It turns out that these different interfaces are all

equivalent and portability is not in jeopardy.

Consider the following to demonstrate this principle. Figure 3.3 shows the

specification for boolean. The specification is defined in terms of true, false, not

and and. The operators or and implies are derived from not and and. Assume

instantiation A implements all the operators and instantiation B leaves out the

derived operations. The student of logic knows that any boolean expression using

the or or implies operators can be rewritten using only the not and and. A

translator can be created which will take programs written for instantiation A

and mechanically convert any references to or/implies into their not/and

equivalent which is provably equivalent. If both the input programs and both

the implementations are equivalent, then the outputs will also be equivalent.

Even in the pathological case where A implements only not/and and B

implements only or/implies, the interfaces remain equivalent.

In summary, the resource specification provides the basis on which

implementations are judged to be equivalent. The implementor implements the

specification which can (in theory) be tested for compliance. In the process of

implementing the specification, the implementor has a degree of latitude in the

choice of which operators from the specification are made available to the user.

If he chooses too few or leaves out the wrong ones, his instantiation as well as the

interface, will be provably incorrect. On the other hand, if more operators are

put in the interface than the minimal set, the interface only becomes functionally

redundant. His goal is to select a set which is functionally complete but not

overly redundant.

30

.. * ...

* . .-. -. - ..e •

IV. THE SPECIFICATION LANGUAGE

The specification language used to describe AM (version 2.0) is essentially

the same as AM (version 1.0) by Yurchak (1984). However, our view of the best

form for the language has continued to evolve with the passage of time and

continued research. Chapter III of Yurchak(1984) discusses many pertinent

issues relating to this subject. The reader is encouraged to review this material.

Attention is directed to the sections on parameterized specifications and

extensions.

A. THE GRAMMAR

Appendix A contains the grammar for the specification language. It is

similar to examples found in literature but with changes that give it the flavor of

a programming language. A practical specification language must support

automated parsing. In Lilly (1984), this language was used as the demonstration

language for a syntax directed editor. This editor accepts the grammar of a

specification language and guarantees that any specification built will be

syntactically correct.

Using this language, a specification is constructed with modules called spec.

The extension operator is used to link the specs into a hierarchy. Each spec may

introduce zero or more new sorts, operators and/or axioms. Sorts are similar to

data types. They form object sets from which the operands are selected for the

operators. The elements in a sort are created from operations. Usually, one or

more constants are declared to provide the basis from which other elements are

created. In spec natural, for example, zeronat() is the basis element. Other

elements are generated from the application of the operators. Succnat(zeronato)

yields "I". succnat(succnat(zeronat())) yields "2", etc. Sorts introduced in a spec

may be added to an existing spec through extension or may form the primitives

for a new branch of the hierarchy. Extension provides the only means of relating

the sorts and operators from different specs. 4

"There are several other operations by which two specifications may be related. They are

31

For example, in the AM specification, spec boolean forms the root of the

-hierarchy. It introduces sort bool which represents the boolean abstract data

type. The operations are declared in terms of sort arguments and return sorts.

The elements of this sort are limited to the constants true() and false(). The

axioms convey the semantics of the operations. Spec natural extends spee

boolean by adding sort nat. The extension allows the declaration of new

operators that involve both the new sort nat and in general, any sort from the

extension which in this case, is limited to sort bool. For example,

eqnat: nat,nat -. bool;

shows that the operators of spec boolean may now use both sort nat and sort

bool. The specification is "grown" in this way, a piece at a time.

Parameterized specifications are permitted and are discussed in Yurchak

(1984). Their use is minimized, as their properties are not well understood.

Spec string is the only use of this type of specification.

The semantics and overall structure of the specification must obey certain

rules. All symbols must be unique. No symbol may be used unless it has first

appeared as the name of a spec, in a sort definition, or to the left of a colon in an

operator declaration. This rule guarantees that at no time are the properties of

the object inferred by the name ambiguous. Thus, the structure of the

specification is much like a Pascal program, but more restrictive. There are no

self referential specs, and no use of a spec before it has been defined.

The language classifies all operators into one of three categories, primitive,

derived, and hidden. Primitive operators are those which must be implemented to

provide a full instantiation of the specification. They form the basis of the

resource description. As discussed in the previous chapter, not every primitive

operation need be directly implemented. However, the full functionality of each

primitive operator must be present. Spec natural in Appendix B provides an

illustration. Prednat and sucenat are primitives that are used to describe the

semantics of the arithmetic operators such as sum and sub. The implementor has

the option of excluding either prednat/suecnat or sum/sub because full

discussed in Fasel (1983). We do not use them here.

32

za

4..

". . - - - .. -.p•.. . . . -.- - .- - - . . . -. - . .

-,'. - 4 o.-.. .'*-. . ;..-. . . ". - ..4. - .-4.4., .° -. . . ' .. , .. .' , • -' 'o .' " . ." . - . -. "-'..-

* functionality is available from either set -of operators. However, if both sets are

excluded, then the specification will not he fully instantiated.

Derived operators are those which can be derived from the primitives. The

implementor may ignore these operations because it is always the case that their

functions can be performed by the composition of primitives. Their inclusion is

merely a matter of convenience.

Hidden operators are those to which the programmer has no access. They

represent abstractions of the machine required to express a certain semantics. In

some cases, they are not necessary but rather a convenience that improves the

readability of the specification. Hidden operator wksrct (working source

rectangle) from spee pntblktrans is an example of this kind. In other cases, the

hidden operator is essential to the semantic description. An example is the

hidden operator xeq (execute) from spec am. It is not necessary to directly

implement hidden operators.

The constructs, if-then and if-then-else are used to build conditional axioms.

The syntax of the conditional axiom is:

if boolean expression
then

list of axioms
else

list of axioms
endif;

As would be expected, the list of axioms under the then clause, apply only when

the boolean expression is true. The else clause is optional and its list of axioms

apply when the boolean expression is false. The syntax of boolean expression is:

expression meta relop expression

where the expression is any legal expression of the specification, and meta relop

is the metalanguage symbol "=" (equality relation) or "'=" (inequality relation).

The truth of the boolean expression is based on metalanguage truth which should

not be confused with the specification constant true 9.
*As stated in Yurchak (1984), "the specification does not describe the way in

, which strings from an alphabet are associated to the elements of the ordinal types

such as spee natural or spec integer, nor would it be appropriate." As a

33

• '. .. ,... - '., . ,,* S , .- .. - . -. .-. , .'- ,°-, .-... ' -, .- ,.- °.-. ... ,.. .. ,...... .,. . .. ,a -".

consequence, we are obligated to refer to the "number" 5 as

succint(succint(succint(succint(succint(zerointo0)))))

If large numbers must be referenced, as in our case, this limitation is impossible.

Thus, we have added an enhancement to rectify the problem. The construct [n)

allows an arbitrarily large number of operator applications to be expressed. This

construct has the following semantics:

ifn 1
then

[nIA(x) = A(x);
else

[n]A(x) = [n-1]A(A(x));

where n is a positive number, A is an operator, and x is an expression of the

same sort as A. With this construct the "number" 100, is expressed as

[100]succint(zeroint0)

Note that n and 1 are elements of the metalanguage and A and z, are elements of

the specification.

B. THE MACRO PREPROCESSOR

Writing a specification generates voluminous amounts of specification code.

In many areas this code is repetitious and can be condensed -when a macro

preprocessor is available. Besides helping the writer, the macro definitions aid

readability. Elements of the specification that share a common macro definition

are easily identified. Understanding one implies understanding of all.

The following description of the preprocessor is taken from Yurchak (1984).

The basic form of a macro definition is

replace "text..." with "other text..."

Since the grammar of our specification language does not require quotes, they are

used as delimiters for the definition and replacement strings. A macro with

arguments looks like

replace(A,B,...,Z) "text " with "other text

where the formal parhmeters must be capital letters. Since we do not allow

34

r
U

uppercase letters within the spec itself, an uppercase letter denotes a formal

parameter to a macro. Thus for the definition

replace(S)
"typeof(S);"

with
"typeS: -. type;

atomofS: val -. S;
valofS: S -. val;"

then the string

typeof(bool);

would be replaced by

typebool: - type;
atomofbool: val -. bool;
valofbool: bool -. val;

wherever it appeared.

The utility of the macro is demonstrated in the following area which is

particularly repetitive. The fetch and store operators are used to store and

retrieve values of any type to and from primary memory. All AM data types

map into a common sort, val, which is passed to or returned from these storage

operators. In spec typing there are over thirty data types whose mapping

functions must be described. Each set of mapping functions is identical except

for the names of the operators and sorts. The macro definitions essentially allow

us to describe the first data type and then just list all the others.

Macro definitions are excellent for expressing certain properties of operators

such as commutativity, transitivity, etc., which are used throughout the

specification. Rather than write out the associated axioms repeatedly. we define

macros with appropriate parameters which permit a more readable and explicit

expression of these properties. The equality operator for integers example from

Yurchak (1984) illustrates.

eqint: int.int -. bool:

which returns true() if the arguments are equivalent. false() if not. We would

like to express eqint as an equivalence relation on objects of type int. Thus, we

35

. q* -..oI* .o t. *.Q .-o -.. o-.-. . .o . . q. •.. . .. O -. . • -° • o

* need the following axioms:

eqint(i,i) = trueo;
eqint(ij) = eqint(j,i);
implies (and(eqint (ij),eqint(j ,k)),eqint(i,k)) = trueo;

But there are relations like this one throughout our specification. Thus we define

macros like

replace(X,S)
"equivrel(X,S);"

with
"for i in S

X(i,i) = trueo;
for ij in S

X(ij) = X(j,i);
for ij,k in S

implies(and(X(ij),X(j,k)),X(i,k)) = trueo"

which permits us to write, in the case of eqint,

equivrel(eqint,int);

We then read this as "eqint is an equivalence relation on int " Note that we

are not required to explicitly specify the type of free variables, since this can

normally be determined by context. We do so in the interest of clarity, since

there can be no doubt for which type eqint is an equivalence relation.

For the reader who doubts that the more complex macros described in this

specification will work, a modified version of the familiar M4 macro preprocessor 5

will correctly deal with every macro found in our specification. As a matter of

convention, all macro definitions are located at the beginning of the specification.

SSee Kernighan and Ritchie, The .M4 Macro Preprocesoor, Bell Laboratories, Mfurray Hill,
New Jersey, July 1974.

36

...

K
V. THE DESIGN

The design of the display resource is an exercise in building an abstraction or

model of the display that is appropriate for representing and manipulating

images. Our intention is to model a RGB color monitor driven by a bit-mapped

display system. Appendix B contains the complete specification- for the AM

machine and will be referred to throughout this chapter.

This specification most likely contains errors despite our best efforts to be

exact and thorough. Incorrectly written axioms that introduce ambiguity are one

type of potential error. A second type of problem is the possibility that a portion

of the spec is incomplete which would allow legal but undesirable

implementations. Finally, we note that while this specification is, in fact, a

description of a resource, there is no guarrantee that our perception of this

resource is precisely what the specification describes.

A. THE IMAGE CONCEPT

Any abstraction may take on various forms. Some views are more useful

than others. The key question is just how should a monitor be abstracted. What

are the things that a programmer wishes to manipulate when he works with a

display? The goal is to provide a monitor abstraction that supports the concepts

of contemporary graphics systems. The set of functions that control the monitor

image should correspond to the operations on a set of objects that represent the

natural way of thinking about the task of creating a visual display. This monitor

should encourage programmers to work in terms of images that are used to

construct more complex images. The visual image is the main entity or object

that we manipulate with the display resource. All our efforts are directed

towards its construction, modification and projection. In order to effectively

manipulate this entity, we wish to describe its properties along with a set of

operations that can modify these properties. In short, we want to develop an

abstract data type that models the visual image effectively.

37

Extensive research has been performed in this area during the development of

Smalltalk-80, Goldberg (1983). We have found their results extremely helpful

and have incorporated many of their concepts into our abstraction. The object

oriented approach of Smalltalk is closely related to abstract data types and is

very convenient for expressing abstractions. There is a clore correspondence

between the abstract data type with its set of operators and the Smalltalk object

with its set of messages.

The abstract notion of an image, with its properties and operators, is highly

developed in Smalltalk-80. The entity form represents the image in both

Smalltalk (as an object) and AM (as an abstract data type). The form is a two

dimensional object. A number of different sized forms may coexist at any point

in time. Each has a height and width, and for our purposes is always rectangular

shaped. That property which enables us to see the form, is a two dimensional

array of points, each of which is an individually controlled source of illuminance.

The area of the form requires the concept of spatial reference. Smalltalk-80 has a

very general and powerful set of image operators embodied in the Bitblt class.

These operations allow forms to be combined in whole or part with one another

to create a new forms. Most applications of Bitblt operations are graphically

simple, such as "move this rectangle of pixels from here to there". However, the

Bitblt class can also be used for some very powerful and sophisticated operations

involving transparency, image combination and masking. Smalltalk-80 does not

develop the concept of color. Conceptually, color images are only a minor

increase in complexity. But conceptual operations such as inverse video and

masking take on a completely new look when color is added.

From the programmers point of view, consider how images are created and

manipulated. The images that we wish to create are not unique to an electronic

screen. The same images may be created on paper. photographed or drawn on

any flat or two dimensional surface. When a person views a picture. he usually

identifies distinct objects within the picture. For example, consider a picture of a

room which contains a man holding a basketball in front of him. Depending on

the level of detail, there are three distinct objects that combine to create

38

*. ** *'..... * * - . ..t *

the whole picture, the room, the man and the ball. Note that the objects are not

involved, only the images that are associated with the objects.

The most straight forward way we might create the above scene, would be to

begin by drawing the image of the room on a clean sheet of paper, since it is the

object that is farthest back. The image of the man would be drawn next. He is

in front of the two dimensional image of the room and therefore covers portions

of the previous work. Finally, the image of the ball is drawn. It covers parts of

both the man and the room. This is the simplest approach and assumes that

there is no difficulty in overwriting the previous markings. An artist using a

pencil and paper would first conceptualize how to construct this scene in his

minds eye. He considers which objects are in front of others and which details of

an object should be hidden. But because these materials do not easily overwrite,

he may only draw the final or composite image.

A color monitor does not have the restrictions of a pencil and paper. It is

easily overwritten. But this fact has not always been used to full advantage.

Often the image on a monitor is created the same way an artist would do it on

paper. The composite picture is constructed in the programmers head and the

monitor programmed to display this picture. This approach keeps the

programmer operating at a very low level of abstraction. The computer is unable

to provide assistance except at the lowest levels. The trend in contemporary

graphic systems ;s to take the straight forward approach of overlaying images on

top of other images. Once an image has been created, it may be used as a

building block for a more complex image. The programmer now works at a much

higher level of abstraction. The power of the computer can be unleashed to

"construct images" rather than just a series of points and lines.

The process of creating a monitor picture boils down to creating and

manipulating forms that may then be fed to the monitor for display. To create

the previous scene, one would start with a blank full sized form that fits the

display screen. The programmer would then manipulate this form to create the

image of the room. Using the same technique. he would create a form for both

the man and basketball. He would then use the man form as the source and

combine it with the room form as the target. The basketball form is then used as

39

the source and combined with the resultant form as the target. The final

composite form is then fed to the monitor and displayed.

Copying portions of a form would be useful. The programmer may already

have the man in another form and wish to reuse it. He should be able to copy it

out by combining just that part of the form which contains the man as the

source.

How is text handled in such a world? Essentially, the image of any character

is nothing more than a form. Adding text to a picture only requires that the

corresponding character form be copied onto the target form at the proper spot.

The remainder of the display abstraction consists of details needed to support

the. form concept. Intensity and color data types provide the coloring concept

while points and rectangles provide the spatial references. A character set is just

a list of forms or icons. This notion is supported with the font data type which is

an indexed array of forms.

The preceding is a topdown view of the image abstraction. In the remaining

sections of this chapter, we take a more detailed look at the issues and design of

both the data abstractions and resource abstraction.

B. ABSTRACT IMAGE DATA TYPES

In this section, we develop the abstraction of the image in detail along with

other data types needed to support it. In addition, we discuss issues pertinent to

the design and examine how the specification captures the properties of the

abstraction.

If programs are to be portable, hardware details of the target machine must

be kept hidden. Consider pixel density. No matter what pixel density we choose

for AM, it will differ from many machines. The way to achieve portability is to

provide an interface that appears to have a standard pixel density. Any

implementation whose hardware differs from this standard, will provide a hidden

mapping from the standard to the physical. This general technique is used

several times to hide hardware details.

An important design issue is raised when this technique is employed. On

what basis do we choose our standard, or in the above case, the pixel density?

The specification should be written to allow the programmer's intent to be

40

.......................

captured. If the standard is chosen too small, the capability of powerful

hardware can not be realized. If it is too high, it may place an excessive burden

on the small machine and is awkward to program. The idea is to provide

granularity sufficient to record the programmers intent at any reasonable level of

detail. Implementations built on powerful hardware will display the

programmers intention in full detail. Lesser machines will display only the detail

within their capacity. In general, we consider reasonable to include present and

near future capabilities.

1. Intensity and Color

Each point in a form or image has a color attribute which is represented

by the color data type. Spec pointcolor expresses the semantics of color. In an

RGB system, the color at a point on the CRT screen is a composite of three

primary colors, red, green, and blue. Each primary color is associated with an

intensity which is the measure of the illuminance emitted. The color is controlled

by varying the intensities of the three primary colors.

The intensity data type, spec intensity models the intensity attribute of

a primary color. It is a scalar quantity which is similar to the naturals except

that it has an upper bound. Its elements have an ordering that are bounded with

the constants minintenr(and mazintens()

The intensity range is a design choice. In reality, this range is

continuous but there is a limit to the number of discrete intensity levels the

human eye can detect. Our range should be wide enough to support any level of

detail the programmer may reasonably want. Foley (1984) indicates that 128

levels of intensity is not quite sufficient to provide smooth contouring, thus 128 is

too narrow. Our choice of 200 is somewhat arbitrary. This number is less than

256 which allows an intensity to be represented with 8 bits.6 We choose 200

rather that 256. because it provides sufficient detail and is easy to convert to a

scale of 1 to 100 for relative range comparision, i. e., 160 is 80% of the maximum.

The intensity data type provides counting, addition and subtraction

operations like the naturals plus the full set of relational operators. Note that the

GWhile we don't wish to dictate how intensity will be represented, implementation considera-
tions are always important.

41

%I.

"-° " ; ,++' " " " "i " + '+ " " ' " .', ," +" '. ,', "+" ' " , ° ." , ," o, .," T -' ," ," ." . ," ,"y "

axiom

maxintens0 = [199lsuccintens(minintens O)

defines mazintens in terms of minintens(. Neither constant is tied to any

natural number. Most implementors will probably represent portions of intensity

with a subset of the naturals, but, they are not forced to do so. There are several

reasons why intensity should not be synonymous with natural. One, natural has

no concept of null which is discussed below. Two, intensity has a maximum

value and natural does not. Finally, the natural operations of multiply and

divide have no meaning to intensity..

How to treat boundary conditions is another design choice. What does

the sue cintens(mazintensO) mean? One possibility is to let

succintens(maxintens0) = maxintenso;

This prevents an error occurrence which is attractive, but it leads to some

unexpected properties. Should intensity addition:

150 + 100 = 200 (the maxintens is 200)

be permitted without warning the programmer? Our view is that this is an error.

It does not make sense and we don't really know what the programmer intended.

To prevent this, we include axioms:

predintens(minintens0) = undef;
succintens(maxintens0) = undef;

Careful examination of the sumintens and subintens axioms reveal that these

operations are also undef if their execution would lead to a result that is out of

bounds.

Intensity has one disjoint element, the constant nullintenso. Its purpose

is to support the concept of transparent color which will be developed shortly.

Nullintens() may not be used in any of the intensity operators except eqintens

and neintens. It is meaningless to take the successor of nullintens() or add

another intensity to it. Likewise, nullintens() is neither greater nor less than any

other intensity. It can only be compared to other intensities for equality. For

42

..
.

Y.
,

each of these forbidden operations, there is an axiom that explicitly declares the

operation to be undef when nullintens() is an argument.

Color is a triple of three intensity components. The operator defcolor is

used to associate the three intensities that define a specific color. Redcompnt,

grncompnt, and blucompnt return their respective intensity component of a color.

Two colors can be tested for equality by comparing each of its intensity

components. Greater and less than relations do not apply because colors do not

have an inherent ordering.7

The notion of transparency is provided by nullcolor and provides the

means to control form overlays and copying. When a form is constructed to

repiesent an image, points associated with the object are given the desired color.

Points not part of the image are colored transparent. This distinction allows

points in the bottom form to show where the top form is transparent and be

replaced where it is not. The transparent color must be unique to all other

colors. If a color, say black, were to be used, it could never be used as the black

color because it would be impossible to tell if a black point is part of the image or

a hole. Nullcolor(is defined to be that color whose three components are

nullintens. It is undefined to construct any color with a mixture of null and

non-null intensities.

2. Spatial Reference

In order to talk about the area of an image and the location of individual

points, we need a spatial reference system. Spec point provides the data class

that supports the coordinate system. Spec rectangle provides the notion of

area.

A point is represented by sort pnt and constructed from an ordered pair

of int's. The operator locpnt is used for this construction and the operators

xcord and ycord return the respective coordinates of the point. Notice that, like

the integer data type, the coordinates of a point are unbounded in both the

7A partial ordering is possible based on a color's luminescence. The intensity of a color
displayed on a monochrome screen is the algebraic addition of the luminescence of each intensity
component where green is 59%, red is 30%, and blue is 11% of full luminescence. This ordering is
only partial because there are many ways to achieve any luminescence level, i. e., 90% of red,
green and blue is 90% luminescence, but so is 83% green and 100% red and blue.

43

.:-.. :..

positive and negative directions. A full set of relational operators are provided.

These operators are important mechanisms that are used to describe other data

type operators. The descriptions are possible without the relational point

operators, but, their existence make the specification much easier to read.

Gtpnt(a,b) is true if both coordinates of pnt a are greater than pnt b 's

coordinates, that is, if a is above and to the right of b. Gepnt(a,b) is true if pnt

a is equal to pnt b, gtpnt(a,b) is true or if pnt a is directly above or directly to

the right of pnt b. Ltpnt and lepnt test for the corresponding less than

relationships.

In the AM resource, increasing the x and y coordinates moves a point

right and up, respectively, which puts the origin of the positive quadrant in the

lower left hand corner. Note, however, that the orientation of the coordinate

system is not actually defined. Technically, the implementor could orient the

coordinate system in any direction with complete correctness, and create chaos if

programmers write from a different perspective. This problem sometimes occurs

at the interface of an abstraction and the physical world. How do we specify

right and up? We could rename the gtpnt operator to rightand abovepnt. But

the meaning would still be dependent upon our perception of right and above. In

our estimate, it is more convenient to name these relational operators greater

than and less than. An English description must accompany the specification to

describe the orientation of the coordinate system.

The last operator provided in the data type is offsetpnt. It provides the

capability to reference a point by a two part offset relative to another point.

The area enclosed by a rectangle is represented by sort rct and is

constructed from a pair of pnt 's. The operator area performs this construction

from a point pair which represents either of the opposing corners of the rectangle.

Based on our understanding of the coordinate system orientation, the operator

origin returns the point at the lower left corner of the rectangle and corner

returns the upper right. The dimensions of a rectangle can be obtained by the

zdimret and ydimrct operators.

Several other rectangle operators are useful to both the programmer and

the specifier. A rectangle may be moved an offset distance, relative to its present

44

." " 'u, " , ,u "l n i . .' .•, . . . ,• . *

location, -with 8hiftrct or moved to an- absolute location with putret. Inret is a

test operator that checks if a point is inside a given rectangle.

The operator int~etret returns the rectangle formed from the intersection

of two rectangles. Describing its semantics with axioms reveal some subtleties.

Axiom:

inrct(p,intsctrct(rl,r2) = and(
inrct(p,r1),
inrct(p,r2)

is a straight forward description of When a point is in the intersection, i. e., only

if it is in both rectangles. This axiom also handles disjoint rectangles, correctly.

But what is the ret returned by intsetret? More specific, what is the origin of

[" such a rectangle? We must be careful that anomalies of this type do not creep

into the specification. This problem is solved by defining the operator disjrct

which returns trueo(if two rectangles are disjoint. This test operator is then

used in the axiom:

if disjrct(rl,r2) = trueo
then

intsctrct(rl,r2) = undef;
else

inrct(p,intsctrct(rl,r2)) = and(
inrct(p,rl),
inrct(p,r2)

endif;

to specify the undefined rectangle. Note that we can prove from the axioms that

the origin and corner are in the rectangle formed from an intersection. Thus. the

* origin and corner are uniquely characterized but the axioms do not show how

*" they are computed from an intersection.

3. Forms

As we mentioned earlier, the form is the data type that represents an

image. It consists of a rectangular area and a bit-map which can be thought of

as an array of colored points. The height and width of the rectangle impose a

two-dimensional ordering on the data in the bit-map. Spec imageform specify

45

-. . -.4.,* _J-------

the properties of this data type. The initform operator, with a rectangle

argument, creates new forms. Farea is used to query the rectangle on which a

form is based. Initially, the form's points are all colored transparent. The color

of individual points may be read or set with the respective operators, getcolor and

seteolor. The axiom:

if inrct(p,farea(f)) = false()
then setcolor(p,c,f) = undef;

does not permit the programmer to set the color of a point beyond the bounds of

the form. Such an attempt is probably the result of an error. The axiom:

if inrct(p,farea(f)) - trueo
then getcolor(p,setcolor(p,c,f) = c;
else getcolor(p,f) = nullcoloro;

endif;

expresses that when a point is set to a color, the point has that color. Unlike the

above first axiom, the else clause permits points beyond the boundary to be read

but specifies that all such point are nullcoloro. Reading a point beyond the

boundary of a form is not an error. In fact, it is a common occurrence. When

the displayed form is smaller than the display window, points outside the form

are included which the monitor must read and display. This axiom specifies that

that portion of the display window that is outside the form will be displayed in

the background color. Fillform sets all form points to a given color. This

operator is more than just a convenience item, its effect on efficiency is explained

in the last section of this chapter.

The notion of inverse video is a useful tool to the display programmer.

When properly used, it can expand the bandwidth of communication from the

computer to the user. It is typically used to draw attention to a portion of the

screen or indicate a status such as the current menu selection. One way inversing

can be done is to redefine the form in different colors. A second option, is to

create and save both instances of the form, and selectively display the desired

instance. An inversing operator is a better solution particularly in applications

where there are many forms to store or the forms need to be highlighted in

different colors.

46

S. * % * * * J

Inverse video on a monochrome screen, is a simple and common

operation. If AM where monochrome, the inverse operator invform, which

produces the inverse image, would only need one argument, the form to be

inversed. The image would be displayed simply by reversing the single

foreground color with the background color. Introducing color means that the

foreground color may now be more that one color. There is no problem changing

multiple foreground colors to the one background color. But which of the

foreground colors should be used as the new background? The solution is to

provide two color arguments to invform. The first color specifies the new color

for all foreground colors and the second, the background.

The concept of inverse video coupled with transparency, give the

programmer considerable flexibility. For example, the display screen can be set

to any background color. As forms are created, modified and displayed, those

portions that are background are distinguished by the transparent color. The

image can take on the quality of depth. If an object is in front of another, it

covers the back object. The background color of the screen shows through if

nothing is in front of it. At any time, the background color may be

independently changed without recomputing the images. Any font can be easily

inversed to any color pair. For instance, imagine a white and green icon on a

screen with a blue background. If it is inversed to white and red, the background

portion of the icon which was formerly blue becomes red, and the image which

was formerly white and green is now white. Or, it could be inversed to blue and

white which creates a white rectangle on a blue field with the blue bleeding

through the rectangle to form the icon.

In addition to the above operators, we provide a series of operators that

combine forms to create other ones. These operations are grouped together in

the data type point block transfer which is discussed in a separate section.

4. Fonts

Spec iconfont represents the font data type which is an indexed array

of forms. Its most obvious use is the representation of a character font. A

character is not an image but an abstract data type. We commonly associate a

character with a number (usually ASCII) and then use that number to index a

47

character font to get its image. In our case, each form in the font represents the

image of the character associated to its index number. This data type is general

and nQt limited to just character fonts. A set of icons corresponding to a set of

menu choices is another instance of its use.

The rectangular size of the forms, that make up the font, may be of any

size. The only restriction is that their size must all be the same. Initfont

establishes the form size for a new font. Retfont queries an existing font for its

form rectangle. Forms are added and deleted to the font by the respective

operators, setfont and delfont. The axioms:

if infont(id,ft) = true()
then

lenfont (setfont(id,f,ft)) = lenfont (ft);
else

lenfont (setfont (id,fft)) = succnat (lenfont (ft));
endif;

and

getfont (id,setfont (id ,fl ,setfont (id ,f2,ft))) = fl;

show that the setfont operator replaces any existing icon and adds the icon if it

does not already exist. The axioms:

if infont(id,ft) = trueo
then

lenfont(delfont(id,ft)) = prednat(lenfont(ft));
else

lenfont (delfont (id,ft)) = lenfont (ft);
endif;

and

infont(id,delfont(id,ft)) falseo:

express the notion that delfont deletes an icon if it is in the font and does nothing

if not. Lenfont returns the number of forms in the font and infont checks if the

font has a form associated with a given index. The operator getfont returns the

form at the given index. Axioms:

48

if infont(id,ft) = falseo then

getfont(id,ft) = undef;

and

if and(
eqint(xdimrct(rctfont(ft)),xdimrct(farea(f)
eqint(ydimrct(rctfont(ft)),ydimrct(farea(f)))

) =falseO
then

setfont(id,ft) - undef;
endif;

state that it is undefined to get a nonexistent icon or put an icon in a font that is

the'wrong size.

When a display consists of text, it is convenient to use a coordinate

system that is based on the character size rather than a point. We introduce the

term spot to indicate a given icon position. The position of an icon spot is

defined as the point at its lower left corner. The point positions of a series of

spots are in multiples of the font rectangle size. For example, if the font

rectangle is 10 points wide, the x coordinates of a row of spots might be 0, 10, 20,

30, etc. The y coordinate would increment in a similar fashion.

Three font operators are provided to map coordinates between the point

and spot coordinate systems. Note that the spot coordinate system varies

depending on the rctfont size. The operations, sprnap (spot to point) and psmap

(point to spot), map spot coordinates to points and back respectively. From the

axiom for spmap:

spmap(p,r) = locpnt(
mltint(xcord(p).xdimrct (r)),
mltint(ycord(p),ydimrct (r))

we see that, given a rctfont of 50 by 50, spmap takes the spots (0.0), (1,1), and

(1,2) to points (0,0), (50,50), and (50,100). The axiom for the inverse operation

is:

49

S:. :.:.: .i.:: .:: i::::: :::::: i -: :% -- ." :% : . ." :' .-' --" :' ''""i ': .. -" : -.-,,: ..", "'-'- ''-'-

psmap(p,r) = locpnt(
divint(xcord(p),xdimrct(r)),
divint(ycord(p),ydimrct(r))

which returns the series of points back to the original spot coordinates. If the

retfont is changed to 10 by 10, these points now map back to spots (0,0), (5,5),

and (5,10). We use these operators to access locations in a form, relative to the

font size in use. These operators both use point (0,0) as their origin. If a form's

origin is not a multiple of the font rectangle from point (0,0), then the spot

coordinates will not be evenly aligned with the form's bottom and left boundary.

Whken different font sizes are used simultaneously, each font uses a coordinate

system with a different scale. Conflicts are likely to arise and it is the

programmers responsibility to keep things straight.

Spots may be referenced using a third operator offset font. This operator

is also based on the font size, but, it is relative to an arbitrary point rather than

point (0,0). This operator is convenient for relative screen addressing. Since it is

based on the given reference point, it may be used to position icons anywhere in

a form. It is also useful when working with several fonts of different sizes.

C. POINT BLOCK TRANSFER

Spec pntblktrans represents the point block transfer data type. The main

operator is copyblt which is used to combine a designated portion of one form

with a portion of another form. This operation is complex and requires seven

parameters. Three of these parameters specify the forms to be used as the

source, destination, and mask. The other four parameters are encapsulated in the

sort ptblt which is adapted from the Smalltalk object Bitblt. Ptblt simplifies

the copyblt call and is efficient, because often a series of operations is invoked.,

all of which use the same parameters in the one ptblt.

The four parameters of ptblt are the source, destination, and clipping

rectangles and the copy rule. A pair of operators is provided to read and set each

parameter. For example, getsret and setsrct read and set the source rectangle.

The source rectangle specifies that portion of the source form to be copied. The

destination rectangle indicates the location on the destination form where the

50

:-.-

copied points will be placed. The clipping rectangle is similar to the destination

rectangle. It limits the area of the destination form that can be affected by a

copy operation. This independently controlled rectangle is provided for

windowing onto larger scenes. The clipping rectangle is used to ensure that all

picture elements are contained within the bounds of the window.

The clipping function is provided in one central place for efficiency. This

avoids the need to replicate the function in all application programs, Goldberg

(1983). Normally the clipping rectangle is set large and clipping does not take

place. Each application program produces its forms using only the destination

rectangle. A controlling program may set the clipping rectangle to establish the

desired window. All other application programs may continue normal operations

using their destination rectangles with the clipping rectangle overriding any

copies that fall outside the window.

The combination rule determines how the source points will be combined

with the destination. The rule may specify that the source overwrite all

destination points or only transparent points. The difference is to place the

source image in front of or behind the destination image. Other rules are

available which produce a variety of effects.

The combination rule is applied to one pair of points one at a time. Each

pair is formed by a source point and its corresponding destination point. The

mapping function that establishes this correspondence will be developed shortly.

Each invocation of copyblt involves a third form, the mask. Its role is to provide

a texture pattern to the image. This function is realized by modifying the source

point color before it is compared to its corresponding destination point. The

details of the point mappings, mask rules and combination rules will be developed

n the following sections.

1. The Correspondence Function

The concept of mapping each source point to a particular destination

point is quite simple. The precise specification of this idea is tedious, however.

To describe the copyblt operator, we introduce the hidden operators, copypnt,

getmcolor, modpnt, copyrecur, wksrct. wkdrct, nextpnt, and matchpnt. We coin

the term correspondence function to refer to the collective function provided by

51

......... --,- ""-"-, .': - --.-...-. . ..'.'. .'-" . -. -.- ': :. ,'. - .-.'" .' .:.'''---. -" ,", ,-. .." , .

the individual, operators that pair destination and source points. Copyblt is

described recursively. Copyrecur controls. this recursion by systematically -visiting

each point in the source rectangle. Copypnt embodies the combination rules.

The masking rules are built into the operators, modpnt and getmcolor.

Copyblt does not use the source and destination rectangles of ptblt

without qualification. As illustrated in Figure 5.1 (a) and (b), these rectangles

may lie partially or wholly outside their corresponding forms, an event which we

do not consider an error. The copyblt operation is based the intersection of the

ptblt rectangles and their corresponding forms. Wksrct and wkdrct provides the

working rectangles for the source and destination, respectively. The axiom:

Source Form Destination Form Target Area

(a) (b) (C)

Figure 5.1: Working Rectangles and Target Area

52

if or(
disjrct (farea(fl),getsrct (pb)),
disjrct (farea(f2),getdrct (pb))

) = true()
then

copyblt(fl,f2,f3,pb) = f2;
else

copyblt(fl,f2,f3,pb) =
copyrecur(

origin(wksrct (fl,pb)),
fl,
f2,
f3,
pb

endif;

expresses that the destination form is unaltered if either the source or destination

form is disjoint from its ptblt rectangle. Otherwise, the recursion begins at the

origin of the working rectangle. The semantics of copyrecur is described in the

axiom:

if inrct(p,wksrct(fi,pb)) = true()
then

copyrecur(p,fl,f2,f3,pb) copyrecur(
nextpnt(p,fl,pb),
fl,
copypnt(p,fl,f2,f3,pb),
M"3,
pb

else
copyrecur(p,flf2,f3,pb) = f2;

endif:

If the point p is outside the source working rectangle, then the destination form

is unaltered. Otherwise. copypnt is called with the current point to modify the

destination form. The form it returns will be the destination form for the

recursive call at the next point. The nextpnt operator systematically visits every

point in wksrct and then exits out the top of the rectangle. which is the signal to

terminate the recursion.

53

• ... :. :........,......-......, ,..-.. .

V -1.

* Copypnt is called with :the current point in the wksrct for each invocation

of eopyrecur. The matchpnt operator takes this point and returns a destination

point. The matchpnt always has the same relative position to the wkdrct origin as

the input point has to the wksrct origin. For instance, if the input point is right

two and up four from the origin of the wksret, then the matchpnt will also be

right two and up four but relative from the wkdret origin. As shown in Figure

5.1 (c), the effect is to shift the two working rectangles to a common origin which

forms the effective intersection labeled A. We will refer to this area as the target

rectangle. Each destination point in the target becomes the matchpnt to the

overlapping source point. The points in area A are potentially altered by

copypnt. The points in area B fall outside wkdret and will not be altered. Points

in area C are also unchanged because they do not match any source point. The

clipping rectangle is built into copypnt. Each point sent to copypnt is checked

against the intersection of the working destination and clipping rectangles. If it

is inside, then the matchpnt is altered according to the mask and combination

rules in effect, otherwise, no change is made.

2. Masks

The ability to fill an area with a regular pattern provides the effect of

texture. The desired pattern is provided by the third form specified in copyblt.

This mask form may be any legal form of any size. The mask need only be large

enough to represent one cycle of the pattern. The pattern of the mask repeats

over the entire target area when the masking rules make it visible.

The mask rules are fixed and always in effect. Like the main copy rule,

the mask rule is based on a comparision of a source point with its corresponding

mask point. The hidden operator, getmeolor, contains the mask rule and returns

the resultant color. Getmcolor is actually used in the combination rule rather

than the source color. The semantics of getmcolor are contained in the axiom:

54

. . .d ,r-,1d.,- 1i
m ' , ,- ',

eelmail alailn med...In. .

If or(
getcolor(p,fl) = nullcolorO,
getcolor(modpnt(matchpnt(p,fl,f2,pb),f3) nullcolor0

) = true()
then

getmcolor(p,fl,f2,f3,pb) = getcolor(p,fl);
else

getmcolor(p,fl,f2,f3,pb) = getcolor(modpnt(matchpnt(p,fl,f2,pb),f3);
endif;

which, when simplified, says:

if or(
source point = nullcolorO,
match point = nullcolor 0

) - true
then

resultant = source color;
else

resultant = mask color;
endif;

Note that the mask may be multicolored. When no texturing is desired, the

specified mask form is composed of nullcoloro.

Modpnt is a two dimensional modulo function. It computes the

remainder point of any point, modulo the mask rectangle. This function

establishes the correspondence between the points in any given form with the

typically smaller mask form.

We should think of the mask pattern as radiating out from the point

(0,0) to create one large pattern that encompasses the whole form. Initially, this

pattern is hidden. Repeated use of copybit in the masking mode uncovers

portions of the formwide pattern. Thus, no matter where the mask pattern is

applied, if it were to be extended back to point (0,0) (i.e., the pattern revealed).

the origin of the mask will align with point (0,0). This property provides a

smooth and uniform texture without disjoint seams. The corresponding mask

point must be based on the matchpnt rather than the source point location, if the

mask is to have this property. The difference is subtle but has major

ramifications. Consider the situation depicted in Figure 5.2. The mask shown in

(a), is a checkerboard of black and white points. Assume we are using the

55

(a) (b) (C)

Figure 5.2: Disjoint Seams from the Masking Rule

combination rule which always overwrites the destination with the source, or

more precisely, getmcolor. Let every point in the form be even or odd , e. g.,

points such as (0,0), (1,1), (1,3), and (2,4) are even and points (0,1), (1,2), (2,3),

and (3,2) are odd. If the source form is composed of non-null colors, then the

mask will show. No matter how we make a series of copies to the destination,

the odd points should always appear white and the evens black, as in Figure 5.2

(b). But if the mask color is based on whether a source point is even or odd,

disjoint seams can appear. This is because an even source point may be mapped

to any destination point, even or odd. Figure 5.2 (c) shows a potential result of

incorrectly specifing the mask rule. To eliminate seams, the location of the

matchpnt, that the source point maps to, is used to choose the mask point. The

color of this mask point is then compared to the source point color in getmeolor.

We see in the else clause of the above axiom that matchpnt is used rather than p

directly.

3. Combination Rules

There are eight combination rules used by copyblt. These rules and their

effect are illustrated in Figure 5.3. The rules are organized in a manner similar

to the method used by Smalltalk, Goldberg (1983). Figure 5.3 (a) show a box

56

Lii Original

-u

Source

Source

Origin

nullcolor

source color

* original color

O write protected
write enabled

7

Figure 5.3: Combination Rules

57

with four cells corresponding to the- cases encountered when a point from

getmcolor is combined with a point from the original destination. For example,

cell 4 corresponds to the case where thi ge.tmcolor is nullcolor() and the original

destination is a non-null color. By marking each of the cells as write enabled or

write protected, the box can be made to represent any of the combination rules.

The numbers of the cells marked write enabled add to map to the combination

rule number. For instance, rule 3 means that cells 1 and 2 are write enabled and

the remaining cells are write protected. If the getmcolor and destination point

pair correspond to a write enabled cell, the destination point is changed to

getmcolor, otherwise, it remains unchanged. The upper left unnumbered cell is

alWays write protected. Enabling it would mean that when the original

destination point is nullcoloro, it will be replaced with the getmcolor which is

also nullcoloro.

The effects of rules 0 and 7 are the simplest to describe. Rule 0 prevents

any change to the destination and rule 7 replaces the destination with the

masked source. One problem with rule seven is that the background of the source

will leave a hole in the destination. This affect is eliminated by rules 2 and 3

which copy only the foreground parts of the source, leaving the destination

unchanged, where it collides with the source background. Rule 2 slips the source

under the original destination object and rule 3 puts the source on top. The rules

1 and 6 provide a type of bleed through and rules 4 and 5, a clipping action.

4. Other Pntblktrans Operations

The operator drawline provides its named function by repeated

invocations of copyblt. The source form becomes the brush shape and the

masking and combination rules apply as usual. Lines can be drawn in any width

and texture with many different effects. The drawline operator is specified

recursively using one of two hidden operators. hdrawloop and vdrawloop,

depending on whether the line is more horizontal or vertical. Each invocation of

a drawloop operator is relative to a given point on the line. Copyblt is called

with the ptblt destination rectangle shifted. Depending on the state of various

control variables, the shift is in both the major and minor axes or just in the

58

.... *. '..*-
*.

• ° '-"" "e " '"° , " '*""" '"" """" " ":" ' """ 2-',.'x .' .' .,'-,-". ." ," " ..'-'- - .. ".".. ",. ." "-. "-

major axis. Control variables are updated. and the drawloop operator is called

again with the next point.

Two additional operators are provided for font operations, copyfont and

invcopyfont. These operators are designed to conveniently transfer icons to a

form. Cop yfont packages the getfont and cop yblt operators together. It places the

designated icon in a form at a specified location. Inveopyfont is the same as

copyfont with inverse coloring added.

The copyblt operation, is the key to moving the programmer from pixel

to image manipulation. The independently controlled combination and masking

rules, along with the individual selection of the working rectangles to produce the

desired target area, give the programmer great flexibility and power.

D. THE BIT-MAPPED DISPLAY RESOURCE

In the previous sections, we developed the abstractions of the image and

described the set of operators that apply to image programming. We will now

describe the display resource itself. The state of the machine, in AM (version

1.0), is the aggregate of the memory, register, and stack cell contents. In AM

(version 2.0), we will extend the state to include two new entities, the display

register and the monitor.

1. Background on the Processor Resource

Before we describe the extension to AM, the original processor resource

on which this extension is based should be understood. The following is a brief

sketch from Yurchak (1984).

In AM (version 1.0), the five primitive data types, boolean, natural,

integer, character, and string, form the atomic data types and are referred to as

atoms. Yurchak discusses the relationship between the data and the conventional

machine and the impact of this relationship on portability issues. He identifies

the following properties, which are designed into AM to avoid some of the

problems that make portability so difficult to achieve.

- In the organization of primary storage. the next logical data item is in the
next logical address.

- Except as formally specified, no data type may be accessed, in any way, as
another data type.

59

- Given any arbitrary logical address, the value stored there and its type can
always be determined.

Hence, AM uses a tagged architecture with some very special characteristics.

The processor portion of AM is an abstraction of a conventional Von

Neumann resource with some unconventional properties. The only machine

element is called a value. All data primitives (atoms) map into values. Spec

typing describes the relationship of values to atoms. To illustrate this

relationship, consider the multiplication of two integers. We fetch their value

representation from two registers, and convert each value to its integer atom with

the atomofint operator. These integers are multiplied in accordance with the

integer data type specification. The resulting integer is converted back into a

value with valofint for storage into a register.

Primary storage is an array of one or more memory segments, each of

which may contain an arbitrary number of cells. Each cell is capable of

"containing" any legal data value. Both programs and data may reside together

in a single segment. For high speed storage, there are one or more register

segments, each of which contain an arbitrary number of registers. AM also has

one or more stacks, a heap, and a crude file system. Again, every register and

stack cell is capable of containing any type of data.

The basic atomic data types are augmented by several others needed for

the execution of programs. These are instructions and memory, register, stack,

and file addresses.

2. The Display Registers and Window

The value representation of the new data types, intensity, color, point,

rectangle, form, font, and ptblt, may be placed in any memory, register, or stack

cell. However, the image of the form can not be seen by the monitor until it is

first placed in a display register. The concept of the display register is similar to

the standard register. There are one or more display register segments, each of

which contains an arbitrary number of registers. Display registers are restricted

to contain only the value of a form. When forms are used as operands, they may

be located anywhere other types of operands are permitted, in addition to the

display register.

60

Any form that is loaded into -a display register is a candidate for display

on the monitor. Associated with each display register is a display window. The

displiy window area is fixed and the same size for all registers. It represents the

portion of the form in the register that will be presented to the monitor screen.

The display window may be thought of as a framing mat which moves over the

form, exposing a fixed area of the form to the monitor.

Spec displaywindow represents this notion of the display window.

The axioms specify that the dimensions of the window are fixed to a height and

width of 10,000 points. The number of points is another design issue. We need a

uniform interface so that all programs can assume a standard number of points

per screen. This number should be large enough to capture the programmers

intent. If this number is greater than the physical number of pixels for the given

hardware, then the implementor will provide a hidden mapping from the abstract

points to the physical pixels. The number of addressable pixels in one dimension

of the screen is currently greater than 1000 on some machines. 4096 points is

probably large enough for the foreseeable future. Our arbitrary choice of 10,000

is based on these facts plus the convenience of working with a power of 10. The

axiom:

origin(dwin(a)) = atomofpnt(fetchdwin(a,q));

establishes the relationship of a variable window location associated with each

display register address.

3. The Monitor and Its Attributes

The concept of the monitor is very simple from the programmer's

perspective. To produce a picture, the monitor reads the display window of the

selected display register. The segment of the form in the window may contain

the nullcolor. The monitor must map this color to the selected background color

for display. The display window, associated with the register. is not conceptually

part of the monitor. The fact that there may be more to the form than the

segment in the display window, is of no importance to the monitor. It only looks

at the image the display register provides through its window. As mentioned

earlier in the form section, when getcolor reads a point beyond the bounds of a

61

form, it returns nullcoloro. This requires an "empty" display window to appear

as a blank screen in the background color, as would be expected. The background
* Qcolor and selected display register are considered part of the AM state and are the

only monitor attributes the application programmer should be allowed to modify.

Six other read only attributes describe terminal characteristics that the

programmer may need, the number of pixels in either axis of the screen, the

physical dimensions of the screen, the number of physical intensities available

and the number of color planes. These read only attributes must be changeable

by privileged programs, to allow initial configuration and subsequent hardware

changes. Spec monitor describes the attributes of the monitor resource.

-4. Portability Issues

The standardized interface of AM is a major step towards portability.

However, differences in the physical screen dimensions can not be overcome

simply by fixing the number of points per axis to a standard number. If the

screen is rectangular, then a 1000 by 1000 "square" will not be displayed as a

square. If the "square" is adjusted to appear correct and is then moved to a

physical screen with a different aspect ratio (AR), it will again appear wrong. It

is not possible to put precisely the same picture on two different screens with

different AR's. If the picture's AR is maintained, then any scaling factor can at

best match the length of one dimension. The other dimension must be either to

long or short. If both axes are scaled to fit the screen, then the picture's AR will

change and it will appear distorted.

Generally, the programmer wants his picture to fill the available area of

the screen with the constraint that none of the picture is clipped and the

picture's AR is maintained. In other words, he really wants to program in

dimensions relative to the screen dimensions. When we fix the number of

abstract points per display screen, dimensions will be relative to the screen size.

The picture aspect ratio can be maintained by scaling the dimensions in a

generalized way. The screen AR is computed from the screen dimension

attributes of the monitor and placed in a variable as a scaling factor. If this

factor is used to adjust the coordinates properly, a picture can be created that

will respond, as described above, to changes in the screen size and shape. The

62

.°".

* **..*..*'**....................-...'S

screen size-attributes may- also be used by the-programmer who wants to build a

shape that remains an absolute size, regardless of the size and shape of the

monitor screen, assuming it is physically large enough.

The mapping from the 100 million abstract points (10,000 by 10,000) to

a smaller number of physical pixels raises the potential for considerable

inefficiency. Consider this code segment to fill a rectangle:

for i = 1 to 1000 do
for j = 1 to 1000 do

setcolor(locpnt(ij),c,f);

If the physical screen is 500 by 500 pixels, then each physical pixel represents 400

abstract points. This means that, of the 1 million iterations of the above code,

only 2500 pixels are actually set. The other 998,500 iterations set the same pixels

over and over. The fillform operator is provided to avoid this problem. Filling

the same rectangle with

initform(area(locpnt (1,1) ,locpnt (1000,1000)));
fillform(c,f);

will invoke one setcolor instruction for each of the 2500 physical pixels in the

rectangle. The redundant iterations are eliminated. This happens because the

implementation will automatically scale the point data type values. Point (1,1)

remains the same but (1000,1000) becomes (50,50). The essential difference

between these two code segments is that the iteration control mechanism of the

first code segment is outside the point mapping function embedded in the

implementation.

Use of the form operators such as fillform, copyb]t, drawline, etc. avoids

this type of inefficiency, assuming the implementation is done properly. The

iteration in these operations is accomplished after abstract points are converted

to real pixels. In most applications, use of setcolor can be avoided after the first

several forms are constructed. Once several brush and mask forms are created,

they can be used with the other operators to construct the forms for display. If

the programmer must use setcolor extensively, then he has the option of querying

the monitor attributes to get the actual number of pixels. He can then use this

information to build some step functions to avoid redundancy:

63

I%

The intensity and color capability attributes may be useful in a way

similar to the pixel information. If an-application is designed to run on hardware

with a wide range in the number of discrete intensities available, then for

powerful machines, the program may devote considerable effort to compute

points that differ slightly in color shade. In such cases, the actual intensity

capability of the current hardware might be used to scale back the number of

computations to avoid generating detail that the implementation will only

discard because of hardware limitations.

64

....................... *.... . .

VI. IMPLEMENTATION

AM is implemented as a finite state machine interpreter. Version 1.0

comprises approximately 12,000 lines of C code, including the assembler. Details

of the assembler are treated in Appendix C. The overall concept is quite simple.

A text file representing an assembly language program is translated by the

assembler into a relocatable object module. A loader, part of the AM interpreter,

loads this object module into the appropriate cells, and AM executes it.

The original AM, version 1.0 - Unix, was implemented by John Yurchak on a

VA'X 780 running Unix 4.2, B. S. D. The Unix version of AM was rehosted to a

Zenith Z100 microcomputer running MS-DOS 2.13. Rehosting AM (version 1.0 -

Z100) involved all the traditional problems and difficulties of porting software.

For example, Unix C allows 12 character names but the Lattice C compiler used

on the Z100 only recognizes the first 8 characters. Worse, the MS-DOS linker

only uses the first 6 characters. Approximately 350 functions had to be renamed

under a more compact naming convention. This involved changes throughout the

12,000 lines of code. A more serious problem involved the passing of structures.

The Unix version takes advantage of a non-portable feature of Unix C. the ability

to pass structures. For simplicity and safety, we would have preferred to pass

structures by value in the Z100 version, as well. However, this was not an option

and we were forced to convert the program to pass structures by pointer, instead.

To compensate, we adopted a convention that essentially maintains the pass by

value properties of the Unix version.

The ordeal of rehosting AM gives one a good dose of the "portability blues".

But the effort appears to be worth while. The battery of test programs used to

test the Unix version, also runs on the Z100 version without modification and

with the same results.

AM (version 2.0 - Z100) is incomplete at this time. The assembler has been

revised to handle the full extension including all new data types, the resource

extension, plus some additional operators for the original data types. The

machine itself has not yet been extended to handle the new data types. However.

65

we have done sufficient work in this area to give us a very good idea of what the

implementation will look like when it is completed.

Yurchak (1984), Chapter 5, provides an excellent description of the AM

implementation. For completeness and reader convenience, we will repeat major

portions of Yurchak's description, interspersed with examples and discussion of

the Version 2.0 extension.

The overview of the implementation is broken into four main areas. These

are the representation of data types, the mapping of operators in the specification

to functions in the interpreter, the handling of errors, and the execution of a

program. Following the overview,' we discuss several issues pertinent to the

display implementation.

A. IMPLEMENTING DATA TYPES

AM is a tagged architecture. Each data element or value must be self

descriptive. It is important to realize the distinction between an atom (data type)

and a value. An atom, such as a natural, point or form, represents a problem

solving abstraction. A value is a machine element and is the specific

representation of an atom. An atom is representation independent. We establish

representation independence with conversion functions that map atoms to values

and values to atoms. All abstract atoms map to a specific representation or

#define T NAT 0x0002

typedef unsigned intnat;

typedef struct {
short type:
nat val:

} NAT;

Figure 6.1: Type Definitions for Natural

66

value. We say that the machine has a -tagged architecture when the atom, that

a value represents, can be determined solely from the value itself. The most

likely construct to provide this is a structure (record).

Each atom is represented in 'c' as a structure consisting of a 16-bit tag field,

and a value field. A sixteen bit code is assigned to each sort in the specification.

Whenever an atom is created, or copied, it is tagged with the appropriate code.

The size and structure of the value field varies with the type. Figure 6.1 lists

some fragments from the header files used to represent the natural data type

which has a simple value field. Data types with more complex value fields will be

described shortly.

"By using a fixed size tag field as the first field in each record, we build in

some additional robustness since, even in the event of a mistyped structure being

copied into the formal parameter of a function, we can rely upon the first word to

be a valid code (the type).

The next step is to describe the structure for machine values, which must be

capable of containing any atom. The union structure is the natural choice. Every

structure that represents a sort is included in the union, thus, the value structure

can represent any atom.

Since the size of the union structure is determined by the largest union

member, it behooves us to be careful how we represent each data type. If the

value structure becomes large compared to the average size of the member

structures, then memory is poorly utilized. The value field of each data type

structure either represents the value of the date type or a pointer to its real

location. String and form structures are examples that use pointers since their

size is variable and usually large. The minimum size for a value structure on the

Z100 is six bytes, two for the tag field and four for a pointer. We directly

represent a data type's value in the value field if it can be represented in four

bytes or less, otherwise a pointer is used. Naturals, integers and intensity are

examples.

Figure 6.2 shows the union structure for machine values named VAL. Notice

", that INSTR points to a VAL and is itself a VAL since we must be able to store

67

:::: :.(,.:::: .:..:..:..: ::::. :::::::::::::::::::: .-... ,.....,,....',...........,,•,..-..-,•

typedef short opcode;

N,: typedef struct {
short type;
union value *val;

} INSTR;

typedef union value
short type;
opcode opcdval;
BOOL boolval; /* data types *1
INT intval;

BLT bltval;
FONT fontval;
MAD madval; /* memory address */
RAD radval; 1* register address */

INSTR instrval;
MOP mopval; /* monadic operator */
DOP dopval; 1* dyadic operator *

} VAL;

Figure 6.2: Machine Values

and fetch instructions. The VAL it points to, is the instruction's opcode. The

opcode is actually an array of VAL, consisting of the opcode and operands.

The primary physical resources are also defined as structures. Figure 6.3

illustrates several of these resources. Registers, display registers, primary storage

and stacks are represented as arrays of arrays of pointers to values. The reader

should note that a simple change to the constants in the header files can

completely alter the configuration of the machine. We can specify an arbitrary

number of arbitrarily long memory, register, and display register segments, and

an arbitrary number of different sized stacks. The monitor is represented as a

68

typedef struct{
int size;
VAL **val;

}memseg;

typedef struct{
int size;
int sp;
VAL **val;

}stkseg;

typedef struct{
int size;
int xdwin;
int ydwin;
VAL **val;

}dregseg;

typedef struc{
int xpix;

COLR bg;
DAD dsel:

}mtrseg;

#define NIJMMEMSEG 1024
#define NUMSTKSEG1
#define NUMDREGSEG 1

memseg mern[_NUMMEMSEG] {
1024, 0,
1024, 0 }

stkseg stk(NYUMSTKSEGI = f
512,512,0 };

dregseg dreg[NUMDREGSEGI
32, 0 };

Figure 6.3: The Physical Resource

,- , - :-- -- 1. - ' N . .% 1 - .7 17 . - _7...-T-7-_- . .

structure of values which, contain its attributes. Files are represented as an array

of structures containing status information and an input/output buffer. The

* number and type of files can also be changed by modifying a few constants. Only

one module of our interpreter need be recompiled to make this alteration.

B. MAPPING OPERATORS TO FUNCTIONS

It seems natural, although incorrect, to look at the operators in a spec as

functions. However, in the implementation, this makes perfect sense. Figure 6.4

lists the code for the AM module which implements the boolean type. The

header files which provide the constant definitions are omitted here. Notice that,

where possible, we rely upon the operations provided by the C language, rather

than slow down an already slow interpreter with axiomatic implementations of

the operators.

As the implementation proceeds to more complex specifications, the program

relies less upon C and more upon the operators which we have defined. In fact,

the more complex operators are implemented as calls to previously defined

functions which almost directly mimic the axioms from which they are derived.

We will illustrate this shortly.

C. ERROR HANDLING

All errors in the specification are defined with the undef operator. By

definition, that makes all errors fatal. In general, they need not be. However

those errors which are not must be defined explicitly in the specification. As we

have said, a more detailed treatment of errors would be an area for further study.

AM flags most errors in the operators which perform data conversions. This

is a natural place for this to occur, since it is difficult to see how the type of a

data element may be changed at any other time. Figure 6.5 lists a fragment

which implements the natural conversion routines. The routine error does not

return, but terminates execution after writing the error message to stderr. Notice

that, even if a much larger structure was passed to atomofbool or valofbool, the

error would be detected and handled gracefully. This type of error checking is

also performed in the functions which implement data operations.

70

-.

o* -" ." "" -• .* ° '-""o" -" •" "- "-"• • " " " , "."" " • *. " "" ". ° ""." " ° '- " " •• • "• "..-.. ' % ,%

BOOL true = {T BOOL, 1 }
BOOLfalse = { TBOOL, 0 }

BOOL * not(a)
BOOL *a;

BOOL *tmp;

tmp = (BOOL *) tmalloc(sizeof(BOOL));
txnp->type = TBOOL;
trnp->val = !a->val;
return(tmp);

BOOL *and(a,b)
BOOL *a,*b;

BOOL *tmp;

tmp = (BOOL *) tmalloc(sizeof(BOOL));
tmp->type = TBOOL;
tmp->val = (a->val && b->val);
return(tmp);

BOOL *eqbool(a,b)
BOOL *a,*b;

BOOL *tmp;

trnp = (BOOL *) tmalloc(sizeof(BOOL)):.
txnp->type = TBOOL;
txnp->val = (a->val ==b->val);
return(tmp);

Figure 6.4: Operator- Function Mappings

71

.z

NAT *atnat(v)
VAL *v;

NAT *b;

if (v->type != V NAT)
error("value not of type NAT - %x",v->type);

b = (NAT *) tmalloc(sizeof(NAT));
b->type = TNAT;
b->val = v->natval.val;
return(b);

VAL *vlnat(b)
NAT *b;
{

VAL *v;

if (b->type != TNAT)
error("atom not of type NAT - %x",b->type);

v = (VAL *) tmalloc(sizeof(VAL));
v->natval.type = V NAT;
v->natval.val b->val;
return(v);

Figure 6.5: Error Handling

D. EXECUTION

The final point of interest involves actually executing a program. The

method is also illustrative of the way in which the program mimics the axioms of

the specification. Here, too, we resort to subterfuge to implement in a finite way

a specification which could require the expenditure of an infinite resource (an

implied stack in this case). The problem is the corecursive relationship between

the functions zeq and prog. We eliminate this problem by never actually

returning from zeq. We rely on a dangerous but effective C idiom. setjmp and

longjrnp. Figure 6.6 illustrates.

72

• -7 , --. .-. .. ,- . ." .. . ," . ."."".'. .''. -.'..,~ ,*- t, ". ,-, '. ' '. .'. . * .'. . ' . '. p,.,* *. - * *' , . . . '. . - .. - .,,..

#include <setjmp.h>

imp buf context;.

MAD condo;

main(argc,argv)
char *argv[];

int ap;

for (ap=1; ap < argc; ap++){
if (*argv[ap] =''

if (*(argvlapI+1 = 'x'){
traceflag =1;

xtraceflag = 1;

if (*(argv[apl+1) =')

traceflag =1;

initarnO;
* - amloado;

setjmp(_context);
Q=prog(&_pc,Q);

exit (0);

STATE prog(ni,q)
MAD *m;
STATE q;

q =xeq(atinstr(fetchrn(m,q)),m,q);

STATE xeq(i.m.q)
INSTR
MAD *m

STATE q;

opnd *'P;

73

if (i->type T TINSTR)
error("attempt to execute non-instruction - %x",i->type);

p = i->val;
switch (getopcode(p[O] .opcodeval)){

a case and semantics for each valid opcode
goes in here

default:
error(" attempt to execute an illegal instruction - %"

p[OJ .opcodeval);

longjmp(context ,l);

MAD cond(b,znl,m2)
VAL *b;
MEMADDR *ml,*m2;

return (b- >boolval.val? ml: m2);

Figure 6.6: Program Execution

74

I:

case IMMM
q = storem(

fetchm(
&p[1].madval,
q

&p[2] .madval,
q

_pc.val = nxtmad(m)->val;
break

Figure 6.7: The Semantics for mov m m

In main, initam configures AM and invokes all of the initialization operators.

A mload loads a program from secondary storage into the appropriate cells as

directed by the linker directives in the object module. Setjmp then saves the state

of the "real" machine. The variable _pc is the program counter which is set

inside amload. Now everything is set. The program is loaded and ready to run.

Prog is now called. Notice that prog simply invokes zeq. Recall. now the

axiom which defines the semantics of execution.

prog(m,q) = xeq(atinstr(fetchm(m,q)),m,q);

Within zeq a large case statement decodes the instruction and executes it

according to the semantics provided for that case. This semantics is very closely

modeled on the axioms in the specification. Figure 6.7 lists one such case and its

accompanying semantic action. Compare it to the axiom for mov m m.

75

:.. -,.. -. :-.. .. , ;,.-.-...; .. , ,-.:>- . - .. .
,, + , • , , i •i i ++ * n

#
" ++ + i . I+ .+ • i + ." I

+
+ ir +" *" ++ e+ + ," ,

•
"

•
• -a."

xeq(mov m m(ml,m2),m,q) -
prog(

nxtmad(m),
storem(

fetchm(ml,q),

m2,
q

b°".)

The similarities are not accidental. This should make the point that it is

beneficial for the implementation language to permit such a close modeling of the

specification. Obviously, this made the implementation easier to write, easier to

debug and easier to understand.

E. DISPLAY LMPLEMENTATION ISSUES

Implementation of the display portions of the specification present some

unique challenges. Limited memory and hardware design place tight constraints

on internal representations. To begin with, we can not deal directly with the

intensity and point abstractions inside the machine. There are 100 million

abstract points in one full screen image, with each point representing one of

potentially 8 million colors. Obviously, no machine today can handle this kind of

detail for each screen of information.

In Chapter 5, we said that the implementor is responsible for providing a

hidden mapping from abstract units to physical units. The question is, when

should it be done? The earliest possible time is in the assembler. The assembler

can read the abstract information and immediately convert it to physical data.

Since the object file would be in terms of physical units, the AM machine would

not have to deal with abstract units at all.

The strategy has several major disadvantages. Intensity capability and the

number of physical pixels must be known to the assembler to produce the correct

object code. Hardwiring this information into the assembler dooms every

assembler to serving only one machine. If a new terminal is added, then the

assembler would have to be modified. Passing it to the assembler as a parameter

is very burdonsome. Requiring the user to intervene with specific hardware.

parameters defeats one of our major goals. If the assembler is assumed to run on

76

. 5 *

• o ' ,-......:-..,.. -, .', ' .. - -. o. - . .,..,... . •' . . '.'.' ." .°,...-...... ,... .. ,...

its target machine, then. it can automatically compensate for its current host by

reading the monitor attributes. -This may be acceptable, but we prefer an

. assembler to produce object code free of terminal hardward dependencies. Such

code would be portable between different AM implementations with a simple

code translator based on only the implementation and not on what type of

terminal is connected to the system. object code that is not dependent to the

terminal hardware and is portable to all AM machines.

For portable object code, the assembler must put the abstract point and

intensity information in the output code. This is the strategy we adopt. This

information enters and exits AM via the file system, specifically the read and

write operators. In the AM system, file data is also tagged. We design the read

and write operators to apply the appropriate mapping to the intensity and point

data based on the monitor attributes of intensity capability and number of pixels.

For example, the Z100 only has two intensity levels. Therefore, the read operator

maps abstract intensities 0 thru 99 to 0 and 100 thru 199 to 1. Conversely, the

write operator maps 0 to 0 and 1 to 199. Note the unavoidable loss of

information when using a resource with such course granularity.

We now consider some form representation issues. Figure 6.8 shows some of

the structures used to represent a form. Like other data types, the FORM

structure has a tag which identifies it. The value field points to a form structure

which serves as an information header. It contains the rectangle of the form and

a pointer to the cmap. The cmap is an array of colors. The mapping of cmap

color elements to specific points is known by virtue of the rectangle origin and its

width. Each color element requires a nibble to represent one of nine colors (8

real colors plus nullcolor).

Up to this point, forms are handled much like any other data type. To

understand the monitor and display register resources requires knowledge of

specific hardware arrangements. The description of the implementation is based

on the Z100 hardware. We will attempt to keep this discussion as general as

possible.

77

-P . . . - ,

#define T FORM OxOOOa

typedef struct {
rct farea;
char *cmap;/* colormap */

} form;

typedef struct {
short type;
form. *val;

} FORM;

Figure 6.8: Type Definitions for Form

The bit-map for the monitor is located in a reserved portion of memory and

is call the VRAM. It is organized in three 64k segments, one for each color

plane. Essentially, this area is large enough to hold a little over two screenfulls of

information. Based on this size, we have the option of creating one or two

abstract display registers.

The abstract form is unbounded and any specific form may certainly be

larger than the VRAM allotted to a display register. Therefore, when a form is

loaded into a display register, a copy must be maintained in regular memory for

either that portion of the form that does not fit into VRAM or the whole form.

Which approach to use is a trade off between memory and complexity

considerations. The loading mechanism which moves a form between the VRAM

and the cmap is really a transformation function that converts the form between

its two different representation schemes.

The information in the VRAM (and in our abstract display register) is

greater than the monitor screen can show at one time. The display window

controls what portion of the form is viewed. That portion of the VRAM

displayed by the monitor screen is based on a refresh register which marks a start

point in VRAM. The monitor refresh cycle begins reading VRAM at this point

78

and. continues reading a fixed number of bytes equivalent to one full screen. We

use this mechanism to implement the display window in an efficient way.

When the display register is loaded with a larger form, that part that is

actually move to VRAM is based on the current setting of the abstract window.

We also fill the excess VRAM assigned to the display window with the adjacent

portions of the form. When the window is moved over a different portion of the

form, only the refresh register is changed to paint the new picture. This assumes

newly revealed portion of the form is already loaded in VRAM. If the window

movement is too far and now displays part of the form that is not in the VRAM,

then a display interrupt must be executed and the display register is reloaded.

Based on which boundary faulted, the portion of the form that is loaded can be

biased in anticipation of future window movement. Scrolling text is a common

task that will generate this type of action.

The final issue we discuss involves the monitor attributes of background coior

and display register selection. Conceptually, the background color is a monitor

attribute. Its setting affects the image projected from each display register.

Changing this setting should immediately change the image in all registers. In

reality, the nullcolor is converted to the current background color when the form

is loaded into the register because there is no physical definition of nullcolor.

Therefore, when the background color of the monitor is changed all registers will

be force to reload using the new background color. The display register selection

is easily implemented by placing the display window definition of the selected

register in the refresh register.

70

VIl. CONCLUSIONS

The investigation and formulation of an abstraction for the bit-mapped

display resource was the first of our dual goals. We have developed an

abstraction of an image along with supporting data types. We propose that

future systems provide a functional set of operators that will encourage

programmers to program colored images at a high conceptual level. It is not

necessary nor desirable to treat the display as a separate I/O device. Our

framework provides an example of a display resource that is fully integrated with

the processor, in the same way that arithmetic coprocessors are already used.

Our second goal was to further demonstrate the utility of the axiom

specification method by precisely describing the display resource. We believe the

processor and display resource are as hard to abstract and formally describe as

any portion of a computing system. Recall the copyblt operator. It is an

extremely complex operation to formally specify, yet while tedious, the axioms

fully describe the operation and are precise, unambigous, and reasonably readable

by any experienced programmer. The successful specification of both these

resources demonstrates that this method has good merit.

It may turn out that the AM machine is too slow and inefficient to be viable

as a practical machine in its present form. We pay a price when we implement

in a formal way and with a large number of function calls. How much AM can

be modified for efficiency and still retain confidence that it meets the

specification is unclear. The difficultly is, at present, we rely heavily on the fact

that the code is very similar to the specification. Modifications for efficiency that

the make the implementing code less like the specification, erodes our confidence.

Improved techniques for testing implementations are needed.

Testing and formal implementation problems aside, the very existence of a

precise specification can only improve the portability situation.

- The resource designer and implementor will have a precise target.

- Software designers will have a precise and visible interface on which to build.
The semantics of their host will be better understood.

80

S

* - -Quantitative statements can be- made about machines that are reportably
- compatible to a given specification.

81

... An

APPENDIX A: THE ALGEBRAIC SPECIFICATION GRAMMER

abstraction:

(abstraction spec)?

spec:
(spechead Iparmhead) specbody specend

spechead:
namebik 'is'

parmhead:
narnebik 'parm' specbody 'is'

specend:
'end' specname''

namebik:
'spec' specname

spechody:
extension? specblk

extension:
extendblk specblk 'end' 'extend'''

extendblk:
'extend' specnames 'with'

specnames:
specname

Ispecnames ',' specname

specblk:
useblk

Isorthik? opblk axiombik?

usebik:
~use specname ('specname)'mapping? specblk 'enduse'

mapping:
'where' eqivlist

equivlist:
equivalence '

Iequivlist equivalence

82

equivalence:
sortname 'is' sortname

Iopname 'is' opname

sortblk-
' sort' sortnames

sortnames:
sortname''
sortnames sortname '

opblk:
primbik? dervblk? hiddenbik?

primblc:
'primitive' 'op' ops

ops:
op';
ops op''

op:
opname ''arglist? '-'sortname

arglist:
sortname

Iarglist ',' sortname

dervblk:
dervops dervdef

dervops:
'derived' 'op' ops

dervdef:
'derived' 'def' axioms

hiddenbik:
'hidden' 'op' ops

axiombik:
'axiom' axioms

axioms:
axiom''
axioms axiom '

axiom:
conditional
('for' varlist 'in' sortname)? termexpr '=' termexpr

termexpr:
factor
multiplier? opname '(' factors ')'

factors:
factor

factors ',' factor

factor:

multiplier? opname '(' ')'
freevar

varlist:
freevar
varlist ',' freevar

multiplier:
'f' positive number ''

conditional:
'if' termexpr meta relop termexpr then else? 'endif'

meta relop:

then:
'then' axioms

else:
'else' axioms

84

I-7l;.',- .,.. ., . , •. ,,:'.'.. ., . .. , :...'.'.,,. ,. ,.. . . ., ., , .. -,

L- *-***-* 27- 1- 7-0T7tz w7-7~ T . .1777 .. 4 .- z

APPENDIX B: THE SPECIFICATION FOR AM (version 2.0)

replaceo
"NUMINTENS"

with
"199"

replae(
"DISPLAYSIZE"

with
"9999"

replace(X,S)
"equivrel(X,S);"

with
"X(i,i) =trueo;

X(ij) =X(j,i);

iinplies(and(X(i,j),X(j,k)),X(i,k)) =trueo;"

replace(X,S)
"reflexive(X,S);"

with
"X(i,i) = trueo;"

replace(X,S)
"commutative(X,S);"

4 with
"X(i,j) = 0);

replace(X,S)
"transit ive(X,S);"

with
"implies(and(X(i,j),X(j,k)),X(i,k)) trueo;"

replaee(X,S)
"associative(X,S);"

with
"X.(i,X(l,k)) = (ij,;1

replace(X.S)
"irreflexive(X,S);"

with
"X(i,i) = falseo;"

replacef X.S)
"symmetric (X,S);"

with
"irnplies(X(i,j),X (j,i)) =trueo;"

85

replace(X,S)
"antisymmetric(X,S);"

with
"imnplies(and(X(ij),X(j,i)),(i ==j)) =trueo;"

replace(S,T)

"idopers(S,T);ff
* with

" startT: S;
nextT: S S;
prevT: S S;
eqS: S,S -. bool;"

* - replace(S,T)
"idaxioms(S,T);"

with
"prevS(startTo) = undef;
prevS(nextS(i)) -=
if 1=! startT() then

nextS(prevS(i)) i;
endif;
equivrel(eqS,S);"

replace(S)
"typingopers(S);"

with
"typeS: - type;
atomofS: Val - S;
valofS: S - Val;"

rzplace(S)
"typingaxioms(S);"

with
"whattype(valofS(t)) =typeSo;

atomnofS(valofS(t)) = t
if whattype(v) = typeS()

then valofS(atornofS(v)) v;
else atomofS(v) = undef;

endif;"

replace(S,T)
"relop(S,T);"

with
"applyrop(STo,vl ,v2) =valofbool(TS(atomo(S(vl1),atomofS(v2)));

replace(S)
* "isops(S);"

with
'if whattype(v) =typeS()

then applybop(isSo,v) =valofbool(trueo);

else apply bop(isS (),v) v valofbool (falseff);
endif;"

86

replaee(S,T)
"stateaxioms(S,T);"

with
"fetchS(a,initani() undef;,
stores (fetchS(a,q),a,q) = q
implies(

eqT(al ,a2),
fetchS(al,storeS(v,a2,q)) - v

)=trueo;
implies(

not(eqT(&I,a2)),
fetchS(al,storeS(v,a2,q)) = fetch(al,q)

)=true();"

spec boolean
is

sort
boot;

jirimitive
op

true: - bool;
false: - boot;
not: bool - boot;
and: booi,bool - boot;

derived
op,

or: bool,bool - boot;
implies: bool,bool - boot;

derived
def

or(bl ,b2) = not (and(not (bl),not(b2)))
implies(bI,b2) = not(and(bi,not(b2)))

a~dom
faiseo = not(trueo);
not(not(b)) = b
and(trueo,b) = b
and(falseo,b) = faiseo;
commutative(and,bool);

end boolean;

87

$Pee natural
is

extend
boolean

With
sort

nat;
primitive

2' op,
zeronat: -. nat; /*zero
prednat: nat - nat; /* predecessor ~
succnat: nat -~ nat; /*successor *
sumnat: nat,nat - nat; 1* addition '
subnat: nat,nat -~ nat; /S subtraction ~
mltnat: nat,nat - nat; /* multiplication ~
divnat: nat,nat -~ nat; /* division ~
eqnat: nat,nat - bool; /* equal * /
gtnat; nat,nat - bool; /* greater than ~

derived"
op,

Itnat: nat,nat -. bool; /* less than *
genat: nat,nat -. bool; / greater or equal *

lenat: nat,nat -. bool; /* less or equal *
nenat: nat,nat -. bool; /* not equal *

derived"
def

ltnat(n,m) =not(or(gtnat(n,m) ,eqnat(n,m)))
genat(n,m) =not(ltnat(n,m));

lenat(n,m) =not(gtnat(n,m));

nenat(n,m) =not(eqnat(n,m));

axiom
prednat(zeronato) = undef;
prednat(succnat(n)) = n;
succna±(prednat(n)) = n
sumnat(n,zeronato) = n;
sumnat(n,succnat(m)) = succnat(sumnat(n,m));

* .subnat(n,zeronato) = n;
if gtnat(n,m) = true()
then

subnat(n,succnat(m)) = prednat(subnat(n,m));
else

subnat(n,succnat(m)) = uridef;
endif;
mltnat(x,zeronato) = zeronato;
mltnat(x,succnat(zeronato))x;
mltnat(x,y) = sumnat(x,mltnat(x,prednat(y)))
if y = zeronat()
then

divnat(x,y) =undef;

else if ltnat(x,y) = true()
then

divnat(x,y) =zeronato;

* else
divnat(x,y) =sumnat(

succnat(zeronato),
divnat(subnat(x,y),y)

endif
endif;

eqnat(n,m) = eqnat(succnat(n),succnat(m));
gtnat(succnat(n),n) =trueo;

88

4.A

equivrel(eqnat,nat);
irreflexive(gtnat,nat);
irreflexive~itnat,nat);
transitive(gtnat,nat);
transitive(Itnat,nat);
transitive(genat,nat);
transitive(lenat,nat);
antisynetric (genat,nat);
antisymmetric (Ienat,nat);
symmnetric(nenat,nat);
comrnutative(sunnat,nat);
comimutative(mltnat,nat);
associative(sumnat,nat);
associative (mltnat,nat);

end extend;
end natural;

89

spec Integer
1o

extend
boolean,
nat

With
sort

it;
% primitive

op

ntoi: nat -. int; /* nat to int ~
iton: int -~nat; /* it to nat ~
absint: int - it; 1* absolute value *
predint: int -~ tnt;
succit: ixnt - it
suiit: int,int - it;
subint: int,int -* nt;
anitint: int,int - it;

eqit: it,int -*bool;

gtint: int,it -. bool;
derived
OP

gint: int,int -bool;

leit: it,it -4bool;

neint: int,int -. bool;

derived
def

ltint(n,m) =not (or(gthit(n,m),eqint(n,m)))

leint(n,m) not(gtint(n,rn));
neint(n,m) =nat(eint(n,m));

axim nm o~eitnm)
axiom sc~tn)

puccint(predint(x)) = n
sunt(rnt) = xoi~;
ntoi(succnaton) = sumitscitzeot)),tin
iton(zerohitOn) = seront;citzrinotin)
if tn(zerontj) true()t
i tent~~eonO r

thnx)=nd
else)= ndf
else cjtx) untsuca~eoattnx)
e ndi; tx) untscca~eoattnx)

eif m;~eott)=tu(
i tent~~eono r

the nt~)=sbn~eonf~
else n~)=sbntzrit~)
else n~x
endif; x =x

sumit ermtO
sumit(n,sucitom) = n;cn~smn~nm)
subint(,suerontO) = ucnsmitn);
subint(x,zeccnatoy) = x;dn~sbn~xy)
mltint(x,zroinat~y) = zeintsbitl; y)
mitit(x,uccmntzo ento
mitint(x,y)sumint(x ltint x;peity))

if y =zeroint()

go

%.. -

then
divint*,y) =undef;

else if ltint(absint(x),absint(y)) =true()

then
divint(x,y) = zerointo;

else if or(
and(

gtint(x,zerointo),
gtint(y,zerainto)

and(
ltint(x,zerointo),
Itint(y,zerointo)

)=true()
then

divint(x,y) = sumint(
succint(zeroint 0),
divint(subint(x,y),y)

else
divint*,y) = sumint(

predint(zerointo),
divint(sumint(x,y),y)

endif;
endif;
endif;
if gtint(m,zeroint()) = true()
then

if ltint(n,zerointo) = true()
then

modint(n,rn) = modint(sumint(n,m),m);

elemodint(n,m) = subnat(n,mltnat(m,divint(n,m)))
endif;

else
modint(n,m) = undef;

endif;
eqint(x,y) = eqint(succint(x),succmnt(y)))
gtint(succint(n),n) = trueo;
equivrel(eqint,int);
irreflexive(gtint,int);
irreflexive(Itint,int);
transit iv e(gtint, int);
transit ive(lt int,in t);
transit iv e(geint,int);
transit iv e(lein t, int);
ant isymnietric (geint,int);
antisymmetric (leint,int);
symmetric (neint,int);
commutative(sumint,int);
commutative(mltint,int);
associative(sumint,int);
associative(mltint,int);

end extend;
end integer;

%9

spec character
13

extend
boolean

* - with
sort

char;
primitive
op 'A','B','C ,..., .Z': -. char;

a, " '"c " ,z char,
'. ,'0 , #,'$%",~ "% ,',"& ","* ","(,'): --. char;
","_", "+ ",'--,' ", ",{', "}',', "1 " -" char;

V-. char;

1 ': -cachar;

"1'", "27" 3", "47 5, "6 ","" 8" 9' 0""char;
NUL: . .char;

SOH: -* char,
~STX: -. char;

ETX: -. char;
EOT: --. char;
ENQ: "* char;
ACK: --* char;
BEL: -. char;
BS: --, char;
HT: -" char;
LF: -. char;
VT: - char;
FF: -* char;

* . CR: -* char;
SO: --* char;
SI: -. char;
DLE: , char;
DCL: -. char;
DC2: -. char;
DC3: - char;
DC4: -. char;
NAK: -. char;

SYN: - char;
ETB: -. char;

CAN: -- char;
EM: -- char;
SUB: char;
ESC: - char;
FS: -* char;
GS: -* char
RS: -. char;

US: -- char;
SP: - char;
DEL: - char;
eqchar: char,char - bool;
gtchar char,char - bool;

~derived
- op Itchar: char,char -. bool;

gecha, char,char -. bool;
.*." lechar: char,char -. bool;

:nechar char,char - boo;

. "..derived
- def

Itchar(n,m) = not(or(gtchar(n,m),eqchar(n,m)));

. .. 92

• ~~. ... '."-..............4/-.,-%.,.--'...-..'-.... "-..

FS: *I-*.*** char;.. ..

GS:..* -*~ * char,***~* .* * ~'-*

WE 7

gechar~n,m) =not(itchar(n,m));

* Iechar(n,m) =not(gtchar(n,m));

necharjn,m) =not(eqchar(n,m));

axiom
gtchar('DEL', ') true();
gtchar(',' true();
gtchar('}',j true();
gtchar(1 ,{' trueo;
gtchar({(','z') =trueo;

gtchar('z ',..., 'a') = trueo;
gtchar('a',"' trueo;
gtchar('','_ trued;
gtcharz' ','"') trueo;
gtchar(-"']') =trueo;

gtchar(']',') =trueo;
gtchar(", [') = true();
gtchar('j','Z') = trueo;
gtchar(Z IA') = trueo;
gtchar('A', '0') =trueo;

gtchar('0','?') =trueo;

gtchar'?',5>') =true();

gtchar('> ','=') =true();

gtchar('=','<') =trueo;

gtchar(&',';') =trueo;

gtchar(';',':') =trueo;

gtchar(':','g') =trueo;

gtchar(9,..'0)=trueo;
gtchar('0','/)= trueo;
gtchar('/,.)=trueo;

gtchar(.,')= trueo;
gtchar('- ,',') =trueo;

gtchar(',','+ ') = trueo;
gtchar('±', *.) =true();

gtchar(*',')') trueo;
gtchar(')','(') =trueo;

gtdhar('(',"') =trueo;

gtchar("','&') =trlieo;

gtchar('&', '%') =trueo;

gtchar('%',') =trueo;

gtchar('''#)=trueo;

gtchar('#~")=trueo;

gtchar('"','!') = trueo;
gtchar('!',SP) = trueo;
gtchar(SP,US) = trueo;
gtchar(CS,RS) = trueo;
gtchar(RS,GS) = trueo;
gtchar(GS,FS) =trueo;
gtchar(FS.ESC) = trueo;
gtchar(ESC,SUB) trueo;
gtchar(SUB.EM) =trueo;

gtchar(EM.CAN) =trueo;

gtchar(CAN,ETB) trueo:
gtchar(ETB,SYN) =trueo;

gtchar(SYN,NAK) trueo;
gtchar(NAJ{,DC4) =trueo;

gtchar(DC4,DC3) =trueo;

gtchar(DC3,DC2) =trueD;

* -gtchar(DC2,DCI) =trueo;

gtchar(DC1,DLE) =trueo;

gtchar(DLE,SI) =trueo;
gtchar(SI,SO) =trueo;

03

gtchar(SO,CR) = trueo;
gtchar(CRFF) = trueo;
gtchar(FF,VT) = trueo;
gtchar(VT,LF) = trueo;
gtchar(LF,HT) = trueo;
gtchar(HT,BS) = trueo;
gtchar(BS,BEL) = trueo;
gtchar(BEL,ACK) =trueo;

gtchar(ACK,ENQ) =trueo;

gtchar(ENQ,EOT) =trueo;

gtchar(EQT,ETX) =trueo;

gtchar(ETX,STX) =trueo;
gtchar(STX,SOH) =trueo;
gtchar(SOH,NUL) = trueo;
equivrel(eqchar,char);
irreflexive(gtchar,char);
irreflexive(itchar,char);
transitive (gtchar,char);
transitive(Itchar,char);
transit ive(gec har,char);
transitive(lechar,char);
ant isymmetric (gechar,char);
antisymmetric(lechar,char);
symmetric (nechar,char);

end extend;
end character;

94

P spec string
parm

extend
boolean

with

sort

primitive
Op

eqlm: lm~hn -~ bool;
gtlm: lmn,lm - bool;

derived

Opltlxn: lm,lIm bool;
geim: lm,lm -*bool;

lelm: Im,Im.- bool;
nelm: Im,lm -. bool;

derived
def

ltlm(n,m) =not (or(gtlm(n,xn),eqlm (n,m)))
gehn(n,m) =not(ltlm(n,m));

Ielm(n,m) =not(gtlm(n,m));

nelm(n,m) =not(eqlmn(n,m));

axiom
equivrel(eqhn,lm);
irreflexive(gtlm,lm);
irreflexive(Itim,lmj);
transit ive(gtlmIm);
transitive(ltlm,im);
transitive (gelm,lm);
transit iv e(lelmnIlm);
antisymmetric(gelm,lm);
antisyrnmetric~leim,im);
symmetric (nelm,Im);

end extend;
is

extend
natural,
boolean

with
sort

str;
primitive
op

nullstr: -str; *null string
makestr: Im -~ str: .'make */
lenstr: str - nat; string length
headstr: str - [i; string head
tailstr: str - str; string tailI
catstr: str,str -str; .concatenation

eqstr: str,str -. bool;
gtstr: str~str *.book:

derived
op

Itstr: str,str -. bool;
gestr. str,str bool;
lestr: str.str -. bool;
nestr. str,str -. bool;

derived
def

Itstr(n,m) not (or(gtstr(n~m),eqstr(n in))

05

hI D-R159 096 THE FORMAL SPECIFICATION OF A VISUAL DISPLAY DEVICE: 213
DESIGN RND IMPLEMENTRTION(U) NAVAL POSTGRADURTE SCHOOL

I MONTEREY CA J E HUNTER JUN 95
UNCLASSIFIED F/G 14/2 ML

1111.0 t~ I1Q5

(1.25 111.4 11.6

MICROCOPY RESOLUTION TEST CHART

-AtNLBRAUC TA - 16 - A

.*. -. . .- ~ r .%

gestr(nmz) =not(ltstr(u,m));

lestr(n,m) =not(gtstr(n,m));

nestr(n,m) = ot(eqstr(nm));
axiom

lenstr(nuilstr) - zeronato;
lenstr(makestr(l)) - succnat(zeraato);
lenstr(catstr(sl,s2)) - suznnaktenstr(s1),Ienstr(s2));

* headstr(makestr(l)) - 1;
tailstr(makestr(I)) - nullstr,
headistr(catstr(makestr(I),s)) - 1;
tailstr(catstr(macestr(I),s2)) - s2;
headstr(nullstr) - undef;,
tailstr(nullstr) - nulbtr,
catstr(catatr(sI,s2),s3) - catstr(sl,catstr(s2,s3));
catstr(nullstr,s) - catstr(s,nuilstr) - s;
imnplies(eqlm(11 ,12),eqstr(makestr(I),makestr(12)))true();
implies(gtlm(lI,12),gtstr(makestr(ll),makestr(12))) trueo;
gtnat(lenstr(makestr(l)),enstr(nzlstr)) = trueo;
imnplies(gtnat(lenstr(sl),Ienstr(s2)),gtstr(si ,s2)) -true();
if Ienstr(si) !- zeronat()
then

gtnat(lenstr~catstr(sl,s2),Ienstr(s2)) = true(
else

eqnat(lenstr(catstr(sl ,s2),lenstr(s2)) = trueo;
endif;
equivrel(eqstr,str);
irreflexive(gtstr,str);
irreflexive(itstr,str);
transitive(gtstr,str);
transitive (ltstr,str);
transitive(gestr,str);
transitive(lestr,str);
ant isymxnetric (gestr,str);
antisymxne~ric(lestr,str);
symmetric (nestr,str);

end extend;
end string;

spec str.chartype

extend
character

with
use

string(character)
where

char is Im;
eqchar is eqim;
gtchar is gtlm;
Itchar is Itim;
gechar is geim;
lechar is 1dlm;
nechar is nehn;

end extend;
end str.chartype;

96

spet Intensity
* Is

extend
* boolean

with
sort

intens;
* primitive

OP
minintens: -intens; / * minimum intensity/
maxintens: -. intenh; /* maximum intensity 4

nullintens: -. intens; /* null intensity/
predintens: intens - intens;
succintens: intern - intens;
sumintens: intens,intens -. intens;
subintens: intens,intens -intern;

eqintenh: intens,intens - bool;
gtintens: intens,intens - bool;

derived
op

Itintens: intens,intens -bool;

geintens: intens,intens -bool;

leintens: intens,intens -. bool;
neintens: intens,intens -. bool;

derived
def

ltintens(n,m) =not(or(gtintens(n,m),eqintens(n,rn)))
geintens(n,m) =not(ltintens(n,m));

Ieintens(n,m) =not(gtintens(n,m));

neintens(n,m) =not(eqintens(n,m));

axiom
predintems(minintenso) = undef;
predintens(nuffinteasl = undef;
succintens(maxintenso) = undef;
succintens(nuilintens()) = undef;
sumintens(i,nullintenso) =undef;

subintens(i,nullintenso) = ndef;
maxintens() = INUNMINTkNS~succintensominintenso)
sumintens(i,minintenso) = i
subintens(i,zninintenso) = i
sumintens(i,succintensoj)) = succintens(sumintens(i,j));
if gtintens(i,j) =true()

then
subintens(i,siccintens(j)) = predintens(subintens(i,j));

else
subintens(i,succintens(j)) = undef;

endif;
eqintens(i,j) = eqintens(succintens(i),succintens(j));
eqintens(i,j) = eqintens(predintens(i) ,predintens(j));
eqintens(i,succintens(predintens(i))) = true();
eqintens(i,predintens(succintens(i))) = trueoj;
if or(

eqintens(i,nullintensofl,
eqintens(j,nullintenso)

* -)=true()
then

gtmntens(i,j) = undef;
endif;
gtintens(succintens(i),i) = trued;
equ iv rel (eq intens, in tens);
irreflexive (gt intens, in tens);

97

irreflexive(itintens~intens);
transitive(gtinten,intens);
tranative(Itintens,intens);
transitive(geintensintens);
transitive(Ieintens,intens);
antisymmetric(geintens,intens);
antisynumetric(leintens,intens);
symmetric(neintens,intens);
commutative(sumintens,iatens);
associative(sumintens,intens);

end extend;
end Intensity;

98

-- -. -- - -- -

spec pointeolor
is

extend
boolean,
intensity

With

color;
primitive
OP

nullcolor: -~color; f* null color ~
redcampnt: color -~ intern; /* red component ~
grncompnt: color - intens; / * green component ~
blucompnt. color - intens; /* blue component ~
eqcolor. color,color - bool; / * equal color/
defcolor: intens,intens,intens -. color, /*define color /

axiom
redcompnt(nullcolorlj) -nuffintenso;
grncompnt(nullcoloro) = nullintenso;
blucompnt(nuilcoloro) =nullintenso;
if and(

or(
or(

eqintens(il ,nuilintenso),
eqintens(i2,nuilintenso)

eqintens(i3,nuilintenso)

or(
or(

not (eqintens(il,nullintenso))
not(eqintens(i2,nullintenso))

not (eqintens (i3,nuilintenso))

=true()

then
defcolor(il ,i2,i3) = undet;

else
redcompnt(defcolor(il ,i2,i3)) = il;
grncompnt(defcolor(il ,i2,i3)) = i2;
blucontpnt(defcolor(il ,i2,i3)) = iB;

endif;
eqcolor(cl,c2) = and(

and(
eqin tens (redcompnt(c I),redcompnt (c 2)),
eqintens(grncompnt(cl1),grncompnt(c 2))

eqintens(blucompnt(cl),blucompnt(c2))

equivrel(eqcolor,color);
end extend;

end pointeolor;

.0

spec point

extend
d boolean,
* natural,

integer
with.

sort
pnt;

primitive
OP

xcord: pnt - int; /* x coordinate ~
ycord: put - int; /* y coordinate '
locpnt: int~int -~put; /* point location/
eqpnt: pnt,pnt -. bool; /* equal point */
gtpnt: pnt,pnt -. oo; /* right & above/
ltpnt: pnt,pnt -bool; /* left & below/
gepnt: pnt,pnt -. bool; . /* right & above, or right inline

or above inline /
lepnt: pnt,pnt -. ~bool; /* left & below, or left inline

or below inline*/
* offsetpnt: ixt,int,pnt - pnt; /* point offset/
* axiomn

xcord~Iocpnt(i1,i2)) = ii;
ycord(locpnt(il,i2)) = i2;
eqpnt(pl,p2) = and(

eqint(xcord(pl),xcoi(p2)),
eqint(ycord(pl),ycozd(p2))

gtpnt(pl,p2) = and(
* gtint(xcord(pl),xcord(p2)),

gtint(ycord(pl),ycord(p2))

ltpnt(pI,p2) =and(
Itint (xcord(pl),xcord(p2)),
ltint(ycord(pI),ycord(p2))

gepnt(pl,p2) = and(
or(

gtint(xcord(pl),xcord(p2)),
eqint(xcord(pi),xcord(p2))

or(
gt in t(ycord (p I), ycozd (p2)),
eqint(ycord(pi),ycord(p2))

Iepnt(pl,p2) = and(
or(

ltint(xcord(pl),xcord(p2)),
eqint(xcord(pl),xcord(p2))

or(
ltint(ycord(pl),ycord(p2)),
eqint(ycord(pl),ycord(p2))

if x =zeroint()

then
xcord(offsetpnt(x,y,p)) - xcord(p);

else if gtint(x,zerointo) =true()

100

then
xcord(offsetpnt(x,y,p)) - succint(xcord(offsetpnt(predint(x),y,p)))

else
xcord(offsetpnt(x,y,p)) - predint(xcord(offsetpnt(succint(x),y,p)))

endif;,
endif;
if y - seromnt(
then

ycord(offsetpnt(x,y,p)) - ycord(p2);
else if gtint(y,zeroint()) - true()
then

ycord(offsetpnt(x,y,p)) = .succint(ycord(offsepnt(x,predint(y),p)))
else

ycord(offsetpnt(x,y,p)) - predint(ycord(offsetpnt(x,succint(y),p)))
endif;
endif-,
equivrel(eqpnt,pnt);
reflexive(gepnt,pnt);
reflexive(lepnt,pnt);
irreflexive(gtpnt,pnt);
irreflexive(Itpnt,pnt);
transitive(gtpnt,pnt);
transit ive(Itpnt,pnt);
transitive (gepnt,pnt);
transitive(Iepnt ,pnt);

end extend;
end point;

101

spec rectangle
Is

extend
- boolean,

integer,
point

with
sort

rct;
primitive
OP

origin: rct -. pnt; /. lower left corner 4

comrr rct -~pnt; /4 upper righit comner 4

xdimrct: rct - int; /* x dimension
ydiinrct: rct - int; /* y dimnension 4

area: pnt,pnt - rct; /* define ret/
inrct: pnt,rct -. bool; /* pnt inside ret test ~
disjrct: rctrct -. boo]; /* disjoint rcts ~
intactrct: rct,rct -. ret; /4 rct intersection ~
putrct: pnt ,rct -. rct; /4 put ret at location 4

shiftrct: int,int,rct - rct; /4shift rct 4

axIomM
if ltint(xcord(p2),xcord(pl)) -true()

then
xcord(origin(area(pI,p2))) xcord(p2);

else
xcord(origin(area(pl ,p2)))=xcord(pl);
endif;
if ltint (y cord (p2),ycord(plI)) =true()

then
ycord(origin(area(pi,p2)) - ycord(p2);

else
ycord(origin(are&fpl,p2))) = ycord~pi);

endif;,
if gtint(xcord(pi),xcord(p2)) =triie(

then
xcord(corner(area(pl,p2))) -xcord(pi);

else
xcord(corner(area(pl 'p2))) - xcord(p2);

endif;
if gtint(ycord(pl),ycord(p2)) =true()

then
ycord(corner(area(pl,p2)) - ycord(pl);

else
ycord(comer(area(pl,p2)) - ycord(p2);

endif;
7- imrct(p,r) - and(

gepnt(p,origin(r)),
lepnt(p,corner(r))

disjrct(rl~r2)
not(or(

or(
inrc t(origin (r2),r 1),
inrct(corner(r2),rl)

or(
inrct(

Iocpnt(xcord(origin(r2)),ycord(corner(r2)))
ri

102

locpnt (xcord(corner(r2)),ycord (origin (Y2)))
rl.

if dixjrct(rl,r2) = truef)
then

intsctrct(rl,r2) - undef;
else

inrct(p,intsctrct(rI,r2) = and(
inrct(p,rl),
inrct(p,r2)

endif;,
shiftrct(x,y,r) = area(

offsetpnt(x,y,origin(r)),
ofFsetpnt(x,y~corner(r))

putrct(p,r) =area(

offsetpnt(xdimrct(r),ydimrct(r),p)

xdiinrct(r) - subint(
xcord(origin(r)),
xcord(corner(r))

ydimrct(r) = subint.(
ycord (origin (r)),
ycord(corner(r))

end extend;
end rectangle;

103

epee imageform
is

etend
* boolean,

pointcolor,
point,
rectangle

with
sort

form;
primitive
OP

initform: rct -. form; /'initialise form ~
farea: form - rct; /* rct area of form /
getcolor: pnt,form -~color, ~ /* get pnt color .
fllform: color,form -. color, / * fill form * /
setcolor. pnt,color,form - form; /* set pnt color/

* invform - inverse form
* given color A, color B, form F

*map F foreground colors to A
* map F background to B

invform: color,colorform - form;
axiom

farea(mnitform(r)) = r;
getcolor(p,initform(r)) = nullcoloro;
if mnrct(p,farea(f)) = true()

then getcolor(p,setcolor(p,c,f)) =c;

else getcolor(p,f) = nulicoloro;
endif;
if inrct(p,farea(f)) = true() then

getcolor(pjifltform(c,fl = c
endif;
if inrct(p,farea(f)) =false() then

setcolor(p,c,f) =undef;

endif;
if imrct(p,farea(f)) =true() then

if getcolor(p,f) nullcolor()
then

getcolor(p,invform(cl,c2,f)) = c2;
else

getcolor(p,invform(cl,c2,f)) -ci;
endif;

endif;
-* end extentd;

end imageform;

104

spec iconfouat

extend
boolean,
natural,
pointcolor,
rectangle,
imageform,
pntblktrans

with
sort

font;
primItive
op

initfont: rct -. font; /* initialize font ~
rctfont: font - rct; /* rct of font icons ~
lenfont: font -~ nat; /* number of icons in font/
spmap: rct,pnt - pnt; 1* map spot (font loc) to pnt *
psmap: rct,pnt - pnt; /* map pnt to spot (font loc) *
infont: nat,font - bool; /* for given index, does font have icon ~
delfont: nat,font - font; /* delete icon from font */
getfont: nat,font - form; /* get icon form from font ~
setfont: form,nat,font - font; /* put icon into font '/
offsetfont: int,int,font,pnt - pnt; /* offset in multiples of font rcts *

axiomn
rctfont(initfont(r)) = r;
lenfont(initfont(r)) = zeronato;
3pmap(r,p) = locpnt(

mltint(xcord(p),xdixnrct(r)),
mltint(ycord(p),ydimrct(r))

psmap(r,p) = locpnt(
divnt(xcord(p),xdimrct(r)),
divint(ycord(p),ydimrct(r))

infont(id,initfont(r)) = faiseo;
infont(id,delfont(id,ft)) = faiseo;
infont(id,setfont(f,id,ft)) = trueo;
if and(

eqint(xdimrct(rctfont(ft)),xdimnrct(farea(f)))
eqint(ydimrct(rctfont(ft)),ydimrct(farea(f))

)=false()
then

setfont(f~id,ft) = undef;
endif;
if infont(id,ft) = true()
then

lenfont(setfont(f,id,ft)) = Ienfont(ft);
else

Ienfont(setfont(f,id,ft)) = succnat(Ienfont(ft));
endif;
if infont(id,ft) = true()
then

lenfont(delfont(id,ft)) = prednat(enfont(ft));
else

lenfont(delfont(id,ft)) = lenfont(ft);
endif;
if infont(id,ft) = false() then

getfont(id,ft) = undef;
endif;
rctfont(ft) =farea(getfont(id,ft));

105

. - --- * -77

getfont(id,3etfont(fid,ft)) f ;
getfont(id,setfont(a,id,setfont(b,id,ft)))a;
offsetfon9(x,y,p) = locpnt(

sumint(xcord(p),mltint(x,xdimrct(rctfont(ft))),
sumint(ycord(p),mltint(y,ydiinrct(rctfont(ft)))

end extend;
end iconfont;

106

. .m. . . -. k7 '7 , .7 -,m. -. 7' IC -7 77m 2

spec pntblktrans
Is

extend
natural,
integer,
point,
rectangle,
form

with
sort

ptblt;
primitive
op

initptblt: - ptblt; /* initialize ptblt */
getsrct: ptblt - rct; /* get source rct */
getdrct: ptbit - rct; /* get destination rct
getcrct: ptblt - rct; /* get clipping rct */
getruie: ptblt -. nat; /* get copy rule */
setsrct: rct,ptblt -. ptblt; /* set source rct */
setdrct: rct,ptblt -. ptblt; /* set destination rct */
setcrct: rct,ptblt -. ptblt; /* set clipping rct */
setrule: nat,ptblt - ptblt; /* set copy rule */

* copyblt - form copy operation:
• given source, mask destination forms;

call cpyrecur with origin of wksrct
* ptblt controls operation;
5/

copyblt: ptblt,form,form,form -. form;

• drawline - draws line between two pnts:
• given start pnt, stop pnt, brush, destination, mask;
• calls recursive h/vdrawloop depending on slope of line
• drawloop constructs line using repeated
• calls to copyblt using source form as a brush
5/

drawline: pnt,pnt,ptblt,form,form,forn - form;

• copyfont - copy icon from font to a given point in the dest form
• the source and dest rct in ptblt are automatically set
,/

copyfont: pnt,ptblt,nat,font,formform -. form;

* invcopyfont -same as copyfont but with inverse coloring on the
* the font form source.
5/

invcopyfont: color,color,pnt,ptblt,nat,font,form,form - form;
hidden
op

* wksrct - working source rct
* intersection of source form farea
* and the ptblt source rct
*/

wksrct: form.ptblt -rct;

* wkdrct - working destination rct
* interseCtion of destination form farea
• and the ptblt destination rct

wkdrct: form,ptblt - rct;

107

:.:.--- * - :. - *.-

* modpnt - put modulo (2D modulo):
* given put P, form F

if P in F
* then P
* else (wrap P around into F)
* reduce coord of P

* by dim of F
* until P in F

modpnt: pnt,form -. put;

* getmcolor - applies the masking rules
* given pnt P, source S, dest D, mask M, ptblt B
* returns color MS (masked source color)
* based on:
* masking policy
* S color o P
* M color 0 modpnt of
* matchpnt of P,S,D,B

,/getmcolor pnt,ptbit,form,form,form -*color;

* nextpnt - given pnt P, returns next pnt in wksrct
* based on sequential ordering imposed on rct:
* start at origin
* if right neighbor of P in rct
* then return right neighbor of P
* else
* move left to rct boundary

* return pnt above
A/

nextpnt: pnt,ptblt,form -' pnt;

* matchpnt - find corresponding pnt in dest
* given pnt P, source S, dest D, ptblt B

* returns pnt that is offset XY from the
* origin of the wkdrct

* where XY is the offset from the
* origin of the wksrct
* that equals P

matchpnt: pnt,ptblt,form,form -- pnt;

* copypnt - set color at pnt in dest
* given pnt P, source S, dest D, mask M, ptblt B
* set color 0 matchpnt of P,S,D,B
* based on:

* B copy rule
* MS color from getmcolor of P,S,M
* D color 0 matchpnt of P,S,D,B
*/

copypnt: pnt,ptbt,form,form,form - form;~/**
*'cpyrecur, recurive function of copyblt

* given pnt P
* if P in wksrct
* then

* call copypnt with P
call cpyrecur with nextpnt of P

* else

108

, , *C *. -'*i'*l. - . . - 'i. . ". -...... * - -.. . . . * ,

- -- - ., A- - . 7- . - - - - - - - - -

* stop recursion

cpyrecur: pnt,ptblt,form,form,form -. form;

*hdrawloop - recursive function of drawline
*used when absolute value of slope is < 45 degrees
*walks line one horizontal point at a time

* moving vertically as required,
*at each step:

* sets ptblt destination rct
* calls copybit

hrwloop: nat,int,int,int,int,int,form,form,form,ptblt - form;

*vdrawloop - recursive function of drawline
*used when absolute value of slope is >= 45 degrees
*walks line one vertical point at a time

* moving horizontally as required
*at each step:

* sets ptblt destination rct
* calls copybit

vdrawloop: nat,int,int,int,int,int,form,form,form,ptblt -. form;
a~dom

getsrct(initptbito) = area(
locpnt(zerointo,zerointo),
locpnt(zerointo,zerointo)

getdrct(initptbito) = area(
locpnt(zerointo,zerointo),
locpnt(zerointo,zerointo)

getcrct(initptbito) = area(
locpnt(zerointo,zerointo),
locpnt(zerointo,zerointo)

getrule(initptbito) = zeronato;
getsrct(setsrct(r,pb)) =r;

getdrct(setdrct(r,pb)) r
getcrct(setcrct(r,pb)) =r;

getrule(setrule(n,pb)) ni;
wksrct(fpb) = intsctrct(farea(f),getsrct(pb));
wkdrct(f,pb) -intsctrct(farea(f),getdrct(pb));
modpnt(p,f) = offsetpnt(

modin t(x cord (p),xdimrc t(farea(f)))
modint(ycord(p),ydimrct(farea(f)))
origin (farea(f))

matchpnt
p : pnt in source
pb:- ptblt

*s :source
d ddest

matchpnt(p,pb,s,d) =offsetpnt(

subint(
xcord(p),
xcord (origin (wksrc t(s,pb)))

subint(

100

ycord(p),
ycord(origin(wksrct(s,pb)))

origin(wkdrct(d,pb))

getmcolor
'p p: pat in source

pb p: ptblt
a : souirce
m :mask
d: destination

if or(
eqcolor(getcolor(p,s),nullcoloro),
eqcolor(

getcolor(modpnt(matchpnt(p,pb,s,d),m),m),
nuilcoloro

true()
then

getmcolor(p,pb,s,m,d) = getcolor(p,s);
else

getmcolor(p,pb,s,m,d) = getcolor(modpnt(matchpnt(p,pb,s,d),m),m);
endif;,

nextpnt
p p:pnt in source

Sph : ptblt
*s : source

if ltint(
xcord(p),
xcord(corner(wksrct(s,pb))
true()

then
nextpnt(p,pb,s) = Iocpnt(

succint(xcord(p)),
ycord(p)

else
* nextpnt(p,pb,s) = Iocpnt(

xcord(origin(wksrct(s,pb)))
succint(yeord(p))

endif;

*copypnt
*p: pnt in source

pt: ptbit
*s :source

m :mask
Sd :destination

if inrct(
matchpnt(p~pb,s,d)
intsctrct(

wkdrct(d,pb),
getcrct(pb)

)=true()

110

then
if getrule(pb) - seronat()
then

copypnt(p,pb,s,m,d) -d;
else if getrule(pb) - [lsuccnat(seroriato)
then

if and(
not (eqcolor(getmcolor(p,pb,s,m,d),nuJlcoloro))
not(eqcolor(

getcolor(
matchpnt(p,pb,s,d),
d

nullcolorf)

)=true()
then

copypnt(p,pb,s,m,d) = setcolor(
matchpnt(p,pb,s,d),
getmcolor(p,pb,s,m,d),
d

else
copypnt(p,pb,s,m,d) = d;

endif;
else if getrule(pb) =121succnat(zeronat())
then

if and(
not (eqcolor(getmncolor(p,pb,s,m,d),nulcoloro))
eqcolor(

getcolor(
matchpnt(p,pb,s,d),
d

nullcolor()

)true()
then

copypnt(p,pb,g,m,d) = setcolor(
matchpnt(p,pb,s,d),
getmcolor(p,pb,s,m,d),
d

else
copypnt(p,pb,s,m,d) =d;

endif;
else if getrule(pb) = 3lsuccnat(zeronato)
then

if getmcolorjp,pb,s,m,d) !=nullcolo(
then

setcolor(
matchpnt(p,pb,s,d),
getmcolor(p~pb,s,m,d),
d

else
copypnt(p,pb,s,m,d) = d;

endif;
else if getrule(pb) =[4]succnat(zeronato)

then
if and(

- k. . - .. - - - - - - - - -~7

eqcolor(getzncolor(p,pb,s,m,d),nulcoloro),
not(eqcolor(

getcolor(
znatchpnt(p,pb,s,d),
d

nuilcoloro

)=true()
then

copypnt(p,pb,s,m,d) =setcolor(

matchpnt(p,pb,s,d),
nuilcoloro,
d

eadif,
else if getrule(pb) = ISlsuccnat(seronato)
then

if getcolor(
matchpnt(p,pb,s,d),
d

)!= nullcolor()
then

copypnt(p,pb,s,m,d) = setcolor(
matchpnt(p,pb,s,d),
getmcolor(p,pb,s,m,d),
d

else
copypnt(p,pb,s,m,d) =d

endif,
else if getrule(pb) 16]succnat(zeronato)
then

if and(
or(

eqcolor(getmcolor(p,pb,s,m,d),nullcoloro),
not (eqcolor(

getcolor(
matchpnt(p,pb,s,d),
d

nulicolor()

or(
not (eqcolor(getmcolor(p,pb,s,m,d),nullcoloro))
eqcolor(

getcolor(
matchpnt (p,pb,s,d),
d

nullcolor()

=true()

then
copypnt(p,pb,s,m,d) =setcolor(

matchpnt(p,pb,s,d),
getmcolor(p.pb,s,m,d),
d

1112

* else
copypnt(p,pb,sm,d) = d;

endif;
else if getrule(pb) - [7lsuccnat(zeronLtO)
then

if or(
not (eqcolor(getmncolor(p,pb,s,m,d),nullcoloro))
not(eqcolor(

q getcolor(
matchpnt(p,pb,s,d),

* d

nullcolor()

)=true()
then

copypnt(p,pb,s,m,d) = setcolor(
matchpnt(p,pb,s,d),
getmcolor(p,pb,s,m,d),
d

else
copypnt(p,pb,s,m,d) = d;

else
copypnt(p,pb,s,m,d) = d

endif;
end if;
endif;
endif;
endif;
endif;
endif;,
endif;,
endif;

endif;

cpyrecur
p p: pflt in source
pb : ptblt
s source

* m mask
d :destination

if inrct(p,wksrct(s,pb)) = trlae(
then

/* copy pnt and continue ~
cpyrecur(p,pb,s~m,d) = cpyrecur(

nextpnt (p,pb,s),
pb
5,

m,
copypnt(p.pb,s,m.d).

else
/ * all source pnts visited /
cpyrecur(p,pb,s,m,d) d;

* endif;

* * copybit
pb b: ptb~t
s source

113

m: mask
*d: destination

if or(-
disjrct(farea(s),getsrct(pb)),
disjrct(farea(d),getdrct(pb))

)true()
then

* copybit(pb,s,m,d) = d;

copyblt(pb,s,m,d) =

rpyrecur(
origin(wksrct(s,pb)),
pb
5,

endif;,

*hdrawloop

*n: dist to go (major axis)
p minor axis move counter (vertical)
& d x.Deita sign

*dy yDelta sign
*px yDelta abs

p y xDelta abs
*s source form

d ddest form
*m mask form
*pb: ptblt

/' is it the last step ? *
if n = succnat(zeronato)
then

/* time to move in minor direction ?/
if ltint(subint(p,px),zerointo) - true()
then

/*move minor ~
bdrawloop(n,p,dx,dy,px,py,s,d,m,pb) =copyblt(

setdrct(shiftrct(dx,dy,getdrct(pb)),pb)
3,

else
move major

hdrawloop(n,p,dx~dylpx,py,s,d,m.pb) = copyblt(
setdrct(shiftrct(dx,zerointo,getdrct(pb)),pb)
5,

endif;
else if ltinitsubint(p,px),zerointo) =true()

then
/*move minor and continue ~

hdrawloop(n,p,dx,dy,px, py,s,d,m,pb) -hdrawloop(
/reduce distance to go ~

subnat(n,succnat(zeronato(),
/reset counter for next minor move

114

.-.. :.-.

sumint(subint(p,px),py),
dX,
dy,
px,
py,
5,

/* move minor and major then copy brush/
copyblt(

setdrct(uhiftrct(dx,dy,getdrct(pb)),pb)

5,

d.

setdxtt(shiftrct(dx,dy,getdrct(pb)),pb)

else
/*move major and continue ~

hdrawloop(n,p,dx,dy,px,py,s,d,m,pb) = hdrawloop(
/~reduce dist to go ~

subnat(n,succnat(seronat 0),
/* reduce count till next minor move 5

submnt(p,px),
dx,
dy,
px,
Dy,
5,

/ * move major then copy brush/
copyblt(

setdrct(shiftrct(dx,zeroint(,getdrct(pb)),pb)
5,

d,

setdrct(shiftrcttdx,zerointo,getdrct(pb)),pb)

endif;
endif;

*vdrawloop

*n: dist to go (major axis)
p: minor axis move counter (horizontal)

*dx xDelta sign
dy yDelta sign

*px yDelta abs
* y xDelta abs
9: source form
d ddest form
m mask form

*pb : ptbit

* /* is it the last step ?
if n = succnat(zeronato)
then

/* last step ~
-~ if ltint(subint(p,py),serointo) =true()

then
/*move minor '

vdrawloop(n,p,dx,dy,px~py~s,d,m,pbI copyblt(

115

or J, J

- 4 ' --.. . --. - - - .7

setdrct (shiftrct (dx,dy,getdrct (pb)),pb)
3,

else
/move major/

vdrawloop(n,p,dx,dy,px,py,s,d,m,pb) = copybit(
setdrct(shiftrct(xerointo,dy,getdxtt(pb)),pb)

M,

endif;
else if Itint(subint(p,py),zerointo) = true()
then

/*move minor and continue walk .*/
vdrawloop(n,p,dx,dy,px,py,s,d,m,pb) =vdrawloop(

/ * reduce dist to go * /
subnat(n,succnat(zeronato))
/ * set counter for next minor move*/
sumint(subint(p,py),px),
dx,
dy,
px,
py,
5,

/* move minor and major then copy brush *
copyblt(

setdrct(shiftrct(dx,dy,getdrct(pb)),pb)

5,

d,

setdrct(shiftrct(dx,dy,getdrct(pb)),pb)

else
/ * move major and continue walk ~
vdrawloop(n,p,dx,dy,px,py,s~d,m,pb) vdrawloop(

/* reduce dist to go * '/
subnat(n,succnat(zeronato))
/* reduce count till minor move
subint(p,py),
dx,
dy,
pxt
py,
5,

/1* move major and copy brush *
copy bit

setdrct(shiftrct(zerointo,dy,getdrct(pb)),pb)
5,

d,

m,
set drc t(shiftrc t(zeroin t(,dy,getdrct (pb)),pb)

endif;
endif;

11

Sdrawline
pi p:start put

*p2: end pnt
ph p:ptblk
s s: brush form

m mask form
d ddest form

if and(
subint(ycord(p2),ycord(pl)),
subint(xcord(p2),xcord(pl))

)=true()
then
/* line is a single pnt1

drawline(pl,p2,pb,s,m,d) = copyblt(pb,s,m,d);
else if ltint(

absint(subint(ycord(p2),ycord(pl)))
absint(subint(xcord(p2),xcord(p1))

)true()
then

/ * lines is horizontal*/
drawline(pl,p2,pb,s,m,d)=

hdrawloop(
/* distance to go ~
iton(absint(subint(xcord(p2),xcord(pI))),
/ * dist till minor move counter ~
divint(

absint(subint(xcord(p2),xcord(pl)))
12]succint(zerointo)

/*dx
divint(

subint(xcord(p2),xcord(pl)),
absint(subint(xcord(p2),xcord(pl)))

/* dy ~
divint(

subint(ycord(p2),ycord(pl)),
absint(subint(ycord(p2),ycord(p1)))

/* px ~
absint(subint(ycord(p2),ycord(p1)))
1* py ~
absint(subint(xcord(p2),xcord(p1)))

copyblt(pb,s,m,d),

pb

else
' line is vertical

drawline(pl,p2,pb,sjmd)
vdrawloop(

/* dist to go ~
iton(absint (subint (y cord (p2),y cord (p) I)),
/* dist till minor move counter ~
divint(

absint(subint(ycord(p2).ycord(pI)))
121succint~terointo)

117

divint(
subint(xcord(p2),xcord(pl)),
absint(subint(xcard(p2),xcord(pl)))

/* dy ~
divint(

subint(ycord(p2),ycord(pl)),
absint(subint(ycord(p2),ycord(pl)))

/* pX '
absinc(subint(ycord(p2),ycord(p 1)))
/* py 4

absint(subint(xcord(p2),xcord(p 1)),

copybit(pb,s,m,d),
in,
pb

endif;,
endif;,

*copyfont

p :; position in destination for lower left corner of source form
*pb: ptblt
*id: index number
*ft font with source form

m mask
*d: destination form

copyfont(p,pb,id,ft,m,d) = copyblt(
setdrct(

putrct(p,rctfont(ft)),
setsrct(rctfont(ft),pb)

getfont(id,ft),

4invcopyfont
*ci foreground color
*c2 background color

p position in destination for lower left corner of source form
*pb: ptblt
*id index number
*ft font with source form

m mask
*d: destination form

inv copy font (cl,c 2, p,pb, id,ft,m,d) =copyblt(

setdrct(
putrct(p,rctiont(ft)),
setsrct(rctfont(ft),pb)

invform(c 1,c2,getfont(id,ft)),

end extend;
end pntblktrans;

118

spec identifiers
is

extend
boolean

with
sort

memid;
regid;
stkid;
dregid;
id;

primiltive
OP

idopers(memid,memseg); / * memory seg id /
idopers(regid,regseg); /* register seg i& ~
idopers(stkid,stkseg); /* stack seg id ~
idopers(dregid,dregseg); /~display register seg id ~

axiom
idaxioms(memid,memseg);
idaxioms(regid,regseg);
idaxioms(stkid,stkseg);
idaxioms(dregid,dregseg);

end extend;
end identifiers;

119

spec mema ddress

extend
identifiers,
boolean

with
sor~t

* memaddr;
primitive
OP

startmemaddr: memid -. memaddr;
nextmexnaddr memaddr -~ iemaddr;
prevmemaddr. memiddr - memaddr;
getmemid: memaddr -. memid;
offset: int,memaddz - memaddr; / offset from memaddr /
eqmemaddr: memaddr,memaddr -~bool;

axiom
prevmemaddr(startmemaddr(i)) =undef;

prevmemaddr(nextmemaddx(m)) m;
nextmemaddr(prevmemaddr~m)) m;
offset (succint (n),m) = nextmemaddr(offset(n,m));
if offset(n,m) = startmemaddr()
then

offset (predint(n),m) = undef;
else

offset (predint (n),m) = prevmemaddr(offset(n,m));
endif;
eqmemid(i,getmemid(offset(n,startmemaddr(i))))=true();
eqmemaddr(startmemaddr(il),startmemaddr(i2)) =eqmemid(il ,i2);
eqmemaddr(startmemaddr(i),nextmemaddr(a)) = falseo;
eqmnemaddr(nextmemaddr(al),nextmemaddr(a2)) =eqmemaddr(al ,a2);
offaet(zeromnto,m) -m
equivrel(eqmemaddr,memaddr);

end extend;
end meunaddresu;

120

spec regaddress
is

extend
identifiers,
boolean

with
sort

regaddr;
primitive
op

startregaddr: regid -regaddr;

nextregaddr: regaddr - regaddr;
prevregaddr: regaddr - regaddr;
getregid: regaddr - regid;
eqregaddr: regaddr,regaddr - boo!;

axiom
prevregaddr(startregaddr(i)) =undef;,

prevregaddr(nextregaddr(m)) =mi;

nextregaddr(prevregaddr(m)) mn;
eqregaddr(st art regaddr(ilI),startregaddr(i 2)) eqregid(il ,i2);
eqregaddr(startregaddr(i),nextregaddr(a)) =faiseo;

eqregaddr(nextregaddr(aI),nextregaddr(a2)) =eqregaddr(al ,a2);
equivrei(eqregaddr,regaddr);

end extend;
end regaddress;

spec stkaddress
is

extend
identifiers,
boolean

with
sort

stkaddr,
primitive
op

getstkid: stkaddr stkid;
eqstkaddr stkaddr,stkaddr -boo!;

axiom
eqstkaddr(nextstkaddr(al),nextstkaddr(a2)) =eqstkaddr(al .a2);
equivreleqstkaddr,stkaddr);

end extend;
end stkaddress;

a- 121

spec dreg. ddress

extend
identifiers,
boolean

with
sort

dregaddr;
primitive
op

* startdregaddr: dregid. dregaddr,
nextdregaddr: dregaddr - dregaddr;
prevdregaddr: dregaddr - dregaddr;
getdregid: dregaddr - dregid;
eqdregaddr: dregaddr,dregaddr -. bool;

axiom
prevdregaddr(startdregaddr(i)) =undef;

prevdregaddr(nextdregaddr(m)) = m
nextdregaddr(prevdregaddr~n)) -=m
eqdregaddr(startdregaddr(i1),startdregaddr(i2)) =eqdregid(il ,i2);
eqdregaddr(startdregaddr(i),nextdregaddr(a)) - falseo;
eqdregaddr(nextdregaddr(al),nextdregaddr(a2)) =eqdregaddr(aI ,a2);
equivrel(eqdregaddr,dregaddr);

end extend;
end dregaddress;

spec monitor. ttribute
is3

extend
boolean

with
sort

mattribute;
primitive
op

xpixels: - mattribute;
ypixels: - mattribute;
hscrnsise: - mattribute;
vscrnsize: - mattribute;
mntenscapbl: - zattnibute;
colorcapbl: - mattribute;
backgnd: - mattribute;
dielect: - mattribute;
eqmattribute: mat tribute,mat tribute -'bed;

axiom
equivrel(eqmattribute,mattribute);

end extend;
end monltorattrlbute;

'S 122

-. ;-7,T-Ic R- - .4- 07

Spec files

extend
identifiers,
boolean

with
sort

file;
primitive
OP

getfile: fid -. file;
eqfile: file,file - bool;

axiom
eqfile(getfie(il),getfiie(i2)) =eqfid(ilij2);

equivrel(eqfile,file);
end extend;

end files;

spec operatorciasses
Is

sort
mop;
dop;
top;
qop;
sop;
Oop;
rop;
bop;

end operatorcia uses;

spec instructiontype
is

sort
instr;

end Instructiontype;

A 123

. - %
. '.

$Pee typing
is

* extend
boolean,
natural,
integer,
character,
str.chartype,
intensity,
pointcolor,
point,
rectangle,
iniageform,
pntblktrans,

* iconfont,
identifiers,
znemaddress,
regaddress,
stkaddress,
dregaddress,
monitorattribute,
iles,

operatorc lasses,
instructiontype

with
sort

type;
Val;

primitive
op

typingopers(bool);
typingopers(nat);
typingopers(int);
typingopers (char);
typingopers(str.char);
typingopers(intens);
typingopers(color);
typingopers(pnt);
typingopers(rct);
t ypingopers (form);
typingopers(ptblt);
typingopers (font);
typingopers(memid);
typingopers(regid);
typingopers(stkid);
typingopers(dregid);
typingopers(id);
typingopers(memaddr);
typingopers(regaddr);
typingopers(stkaddr);
typingopers(dregaddr);
typingopers(mtrattr);
typin gopers (file);
typingopers(mop);
typingopers(dop);
typingopers(top);
typingopers(qop);
typingopers(sop);
typingopers(oop);
typingopers(rop);
typingopers(bop);

124

typingopers(instr);
hidden

whattype- val - type;.
eqtype: type,type -~ bool;

axiom
typingaxioms(bool);
typingaxioms(nat);
typingaxioms(int);
typingaxioms(char);
typingaxioms(str.char);
typingaxioms(intens);
typingaxioms(color);
typingaxioms(pnt);
typingaxioms(rct);
typingaxioms~forin);
typingaxioms(ptblt);
typingaxioms(font);
typingaxioms(memid);
typingaxioms(regid);
typingaxiom(stkid);
typingaxioms(dregid);
typingaxioms(fid);
typingaxioms(memaddr);
typingaxioms(regaddr);
typingaxioms(stkaddr);
typingaxioms(dregaddr);
typingaxioms(mtrattr);
typingaxioms(file);
typingaxioms(mop);
typingaxioms(dop);
typingaxioms(top);
typingaxioms(qop);
typingaxioms(sop);
typingaxioms(oop);
typinrgaxioms(rop);
typingaxioms(bop);
typingaxioms(instr);
equivrel (eqtype, type);

end extend;
end typing;

125

spee operators

extend
operatorclasses,
typing

with
primitive
OP

boolnot: - mop;
booland: -~ dap;
boolor: - dop;
natpred: -~ mop;
natsucc: -~ mop
natsum: - dop;

* -, natsub: -*dop;
nateq: - rap;
natgt: - rop;
natlt: - rop;
intpred: - mop;
intsucc: - mop;
intaba: -4mop;

illtftai: -mop;

ifltitafl: -4mop;

intsum: -. dap;
intsub: -4dop;

intmlt: dap;
intdiv: -. dap;
intmod: - dop;
inteq: - rap;
intgt: - rap;
intlt: - rap;
chareq: - rap;
chargt: - rap;
charstrlen: - map;
charmakestr: -. map;

* - . charheadstr: -*map;

chartailstr: -mop;
charcatstr: - dop;
str.chareq: - rap;
str.chargt: -rap;
intenspred: - map;
iflteflssucc: - map;
intenssum: - dap;
intenssub: - dap;
intenseq: - rap;

* intensgt: - rap;
colorredcampnt: - mop;
colorgrncompnt: - mop;
colorblucompnt: - mop;
coiordef: top;
caloreq: -rap;

pntxcord: - mop;
pntycord: - mop;
pntloc: - dop;
pntoffset: - top;
pnteq: - rap:
pntgt: -rap;
pntlt: -. rap;
pntge: -. op;
pnt Ic: -rap;

rctorigin: -mop;

126

rctcomer. mop;
rctxdim: -~ mop;
rctydim: - mop;
rctaea: - dop;
rctin: -. dop;
rctdisj: -. dop;
rctint: -*dop;

rctput: -. dop;
rctshift: -. top;
forminit: -. mop;
formfarea: - mop;
fonngetcolor. - dop;
formfiil - dop;
formstcolr. -~ top;
forminv: -. top;
fontinit: - mop;
fontrct: - mop;
fontlen: - mop;
fontspmnap: - dop;
fontpsmap: - dop;
fontin: -~dop;

fontdel: - dop;
fontget: - dop;
fontset: -top;

fontoffset: - qop;
ptbltgetsrct: -. mop;
ptbltgetdrct: -mop;

ptbltgetcrct: -. mop;
ptbltgetrule: -. mop;
ptbltsetsrct: -dop;

ptbitsetdrct: -. dop;
ptbltsetcrct: -. dop;
ptbltsetruie: -. dop;
ptbitcopy: - qop;
ptbltdrawline: - sop;
ptbltfont: -sop;
ptbitfontinv: - oop;
isbool: -. bop;
isnat: -. bop;
isint: -. bop-,
iscbar: -. bop;
isstr.char: -~ bop;
isintens: - bop;
iscolor: - bop;
ispnt: - bop;
isrct: - bop;
isform: - bop;
isptbit: - bop;
isfont: - bop;
ismemnid: - bop;
isregid: - bop;
isstkid: - bop,
isdregid: - bop;
isfid: - bop:

ismemaddr: - bop-,

isstkaddr - bop;
isdregaddr: - bop;
isfile: - bop;
ismop: -. bop;
isdop: -. bop;

127

istop: -~ hop;
isqop: - bop;
issop: -~ bop;
isoop: - bop;
isrop: - hop;
isbop: - hop;
isinstr. -~ hop;

hidden
OP

applymop: mop,val - ml;
applydop:. dop,val,val -. vl;
applytop: top,val,val,vaj - val;
applyqlop: qop,val,val,val,va -~ vl;
applysop: sop,val,vaivaJ,val,val,val -~val;

applyoop: oop,val,val,val,vai,val,val,val,vaI -. vaJ;
applyrop: rop,vai,val - vl;
applyhop: bop,val - val;

azdom
applymop(boolnotO,v) - valofbool(not(atomofbool(v)))
applydop(boolando,vi1,v2) = valofbool(and(atomofbool(v i),atomofbool(v2)))
applydop(boolor(,vl1,v2) = valofbool(or(atomofbool(v 1),atomofhool(v2)))
applymop(natpredo,v) - valofniat(prednat(atoanofnat(v)))
applymop(natsucco,v) - valofnat(succnat(atomoinat(v)))
applydop(natswno,v 1,v2) valofnat(sumnat (atomofnat(v 1),atomofnat(v2)))
applydop(natsubo,vi1,v2) valofnat(subnat(atomofnat(v i),atomofnat(v2)))
applymop(intpredo,v) =valofint(predint(atomofint(v);
applymop(intsucc(,v) - valoint(succint (atomoint(v);
applymop(intahs(),v) =valorint(ahsint (atomoint(v);

* applymopfintntoi(),v) =valofint(ntoi(atomofnat(iv)))

applymop(intitono,v) =valofnat(iton(atomofint(v)))
applydop(intsumo,vi,v2) valofint(sumine(atomorlnt(vi),atomoflnt(v2)))
applydop(intsub(,v 1,v2) =valormt(subint(atomofint(v 1),atomoftnt(v2)))
applydop(intmito,v i,v2) =valotint(mltint(atomoit(v I).atomofint(v2)))
applydop(intdivo,vl ,v2) =valorint(divint(atomormt(vl),atomoint(v2)))
applydop(intmodo,vi1,v2) -valofint(modint(atomorint(v i),atomofint(v2)))
applymop(charstrieno,v) valofnat (lenstr.chau(atomofstr.char(v)))
applymop(charmnaestro,v) =valofstr.char(malestr.char(aLomofchazjw)))

applymop(charheadstro,v) =valofchar(headstr.char(atomofstr.char(v)))

applymop(chartailstr(,v) -vaiofstr.char(tailstr.char(atomofstr.char(v)))
appiydop(charcatstr(,vlI,v2) - valofstr.char(catstr.char(

atomofstr.char(v 1),
atomofstr.char(v2)

applymop(intenspred()v) - valormtens(pz-edintens(aaomorlntens(v);
applymop(intenssucc(,v) -valorintens(succintens(atomointens(v);
applydop(intenssum(,vI ,v2) = valoincens(sumintens(

atornofintens(v 1),
atomofintens(v2)

applydop(intenssub(,vlI,v2) v aloin tens (subin tens(
atomofintens(vl),
atomnofihuens(v2)

applymop(colorredcompnto,v) - v alorin tens (redc ompn t(atomofcolor (v)))
applymop(colorgrncompnt(),v) = valofsntens(grncompntiatomofcolor(v)))
apply mop(colorblucompnt (),v) =valofintens(blucompnt(atomofcolor~v)))
applytop(c olordef()vI, v2,v3) =valokcolor(defcolor(

atomofintens(v i),
atomointens(v2),
atomointens(v3)

128

VplmpptcrOv -vao. ~ cr~tmfn~)
applyinop(pntxcordo,v) - vaiofint(xcord(atomofpnt(v)))

applydop(pntloc(,vl ,v2) - valofirnt(Iocpnt(atomoint(v1),atomoint(v2)))
applYtop(pntoffsetO,v 1,v2,v3) -valofpnt(offsetpnt(

atomoflnt(vl),
atomofint(v2),
atomofpnt(v3)

applymop(rctorigino,v) =valofpnt(origin(atomofrct(v)))

applymop(rctcornero,v) =vaiofpnt(corner(atomofrct(v)))
applymop(rctxdimo,v) - valofint(xdimnrct(atomofrct(v)))
applyinop(rctydiino,v) - vaIofint(ydiznrct(atomofrct(v)))
applydop(rctareao,vi ,i2) = valofrct(area(atomofpnt(vl),atomofpnt(v2)))
applydop(rctino,vi1,v2) - valofbool(inrct(atomofpnt(v 1),atomofrct(v2)))
applydop(rctdisjo,v1 ,v2) =vaiofbool(disjrct(atomnofrct(vl),atomofrct(v2)))
applydop(rctinto,vi ,v2) =valofrct(intsctrct(atomofrct(vl1),atomofrct(v2)))
applydop(rctputO,vI ,v2) =valofrct(putrct(atomofpnt(v 1),atomofrct(v2)))
applytop(rctshiftO,vI1,v2,v3) = valofrct(shiftrct(

atomotmt(vl),
atomormt(v2),
atomotrct(v3)

applymop(forminito,v) = valofform(initform(atomofrct(v)))
applymop(formfareao,v) = valofrct(farea(atomofform(v)))
applydop(formngetcolorO,vl,v2) = valofcolor(getcolor(atomofpnt(vl),atomofform(v2)))
applydop(formfiHl(),v 1,v2) = valofform(fillform(atomofcolor(v 1),atomofform(v2)))
applytop(formsetcoloro,v1 ,v2,v3) = valofform(setcolor(

atomofpnt(v 1),
atomofcoior(v2),
atomofform(v3)

applytop(forminvO,v 1,v2,v3) =valofform(invform(

atomofcolorlvl),
atomofcolor(v2),
atomofform(v3)

applymop(fontinito,v) =valoffont (initfont (atomofrct(v)))
applymop(fontrctl),v) valofrct(rctfont(atomoffont(v)))
applymop (font len (),v) =valofnat(Ienfont(atomoffont(v)))
applydop(fontspmapo,vl1,v2) = valofpnt(spmap(atomofrct(v 1),atomofpnt(v 2)))
apply dop(fontpsmap (), v 1, ,v2) = valofpnt(psmap(atomofrct(v 1),atomofpnt(v2)))
applydop(fontin(,v 1,v2) =valofbool(infont(atomofnat(v) ,atomoffont(v2)));
applydop(fontdeiO,v I,v2) =valoffont(deifont(atomofnat(vi),atoznoffont(v2)))
applydop(fontgetfont(),vi1,v2) = valofform(getfont(atomofnat(v I),atonioffont(v2)))
apply top (fontset (),v I ,v 2,v 3) = valoffont(setfont(

atomofform(v 1),
atomofnat(v2),
atornoffont(v3)

D ;
appiyqop(fontoffseto,v1 ,v2,v3,v4) =valofpnt(offsetfont(

atomoint(v i),
atomoint(v,2),
atomoffont(v3),
atomofpnt(v4)

applymop(ptbltgetsrct (,v) =valofrct(getsrct(atomofptblt(v)))
applyxnop(ptbltgetdrct(,v) =valofrct (getdrct (atomofptblt(v)))

J applymop(ptbltgetcrct(,v) =valofrct(getcrct(atomofptblt(v)))
applymop(ptbitgetrule(,v) =valofnat (getrule(atomnofptbh (v)))
applydop(ptbltsetsrctO,vl1,v2) =valofpt bit(setsrc t(atomofrc t(v I),at omofptblt (v 2)))
applydop(ptbltsetdrxt(,v 1,v2) valofpt bit(setdrc t(atomofrc t(v I))at omofpt blt(v 2)))

120

applydop(ptbltsetcrcto,v1 ,v2) -valofpt bit(setcrc t(atomofrct (v 1),atomofptbit (v2)))
appiydop(ptbitsetruieo,vl,v2) -valofptbht(setrue(atomofnat('I),atomofptblt(v2)))
applyqop(ptbltcopyo,vl,v2,v3,v4) =valofform(copyblt(

atomofptbit(v i),
atomofform(v2),
atomofform(v3),
atomofform(v4)

applysop(ptbltdrawlineo,v 1,v2,v3,v4,vS,v6) =valofform(drawline(

* atomofpnt(vl),
atomofpnt(v2),
atomofptblt(v3),
atomofform(v4),
atomofform(vS),
atomofform(v6)

applysop(ptbltfont(,vl1,v2,v3,v4,v5,v6) =valofforxn(copyfont(

atomofpnt(vl),
atouiofptbit(v2),
atomofnat(v3),
atomoffont(v4),
atomofform(vS),
atomofform(v6)

appiyoop(ptbltfontinvo,vl ,v2,v3,v4,vS,v6,v7,v8) =valofforxn(invcopyfont(

atomofcolor(vl),
atomofcolor(v2),
atomofpnt(v3),
atomofptbit(v4),
atomofnat(v5),
atomoffont(v6),
atomofform(v7),
atomofform(vs)

relop(nal,eq);
relop(nat,gt);
relop(nat,it);
relop(int,eq);
relop(int,gt);
relop(int,lt);
relop(char,eq);
relop(char,gt);
relop(str.char,eq);
relop(str.char,gt);
relop(intens,eq);
relop(intens,gt);
relop(in iens,It);
relop(color,eq);
relop(pnt,eq);
relop(pnt,gt);
relop(pnt.it);
relop(pnt,ge);
relop(pnt,Ie);
isops(bool);
isops(nat);
isops(int);
isops(char);
isops(str.char);
isops(intens);
asops(color);
isops(pnt);

130

isops(rct);
isops(forn);
isops(ptbit);
isops(font);
isops(memid);
isops(regid);
isops(stkid);
isops(dregid);
isops(fid);
isops(memaddr);
isops(regaddr);
isops(stkaddr);
isops(dregaddr);
isops(file);
asops(rnop);
isops(dop);
isops(top);
isOPS(qop);
isops(sop);
isops(oop);
isops(rop);
isops(bop);
isops(instr);

end extend;
end operators;

spec Instructions

extend
natural,
integer,
memaddress,
regaddress,
stkaddress,
dregaddress,
operatorciasses,
instructiontype,
typing

with
primitive
op

org: - instr;
extern: - instr;
globi:. -~ instr,
mbegmn: - instr;
mend: - istr;
offit: int,regaddr - instr-
link: regaddr,nat - instr;
unlink: regaddr - instr;
getdwin: dregaddr,regaddr - instr;
setdwin: regaddr,dregaddr - instr;
getmtr. mtrattr,regaddr - instr;
setmtr. mtrattr,regaddr - instr;
monads: mop,regaddr - instr;
monad: mop,regaddr,regaddr - instr;
monadi: mop,val,rega!.!r - instr;
dyads: dop,regaddr,regaddr - instr;
dyadsi: dop,val,regaddr - instr;
dyad-. dop,regaddr,regaddr,regaddr - instr;
dyadi: dop,val,regaddr,regaddr - instr;
triads: top,regaddr,regaddr,regaddr - instr;
triadsi: top,val,regaddr,regaddr - instr,
triad: top,regaddr,regaddr,regaddrregaddr - instr;
triadi: top,val,regaddr,regaddr,regaddr - instr;
quads: qop,regaddrregaddr,regaddr,regaddr - instr;
quad: qop,regaddr,regaddr,regaddr,regaddr,regaddr - instr;
sexads: sop,regaddr,regaddrregaddr,regaddr,regaddr,

regaddr - instr;
sexad: sop,regaddr,regaddr,regaddr,regaddr,regaddr,

regaddr,regaddr - instr;
octads: sop,regaddr,regaddr,regaddrregaddr,regaddr,

regaddr,regaddrregaddr - instr;
octad: sop,regaddr,regaddrregaddr,regaddr,regaddr,

regaddr,regaddrregaddr,regaddr -. instr;
movi m: val,memaddr - instr;
moviyc:vlit- inst-r:

movir: valgadr- nsr
movi ri: valregaddr - instr;
movi ri: val,regaddr -in-fstr;
movi rid: val,regaddra,int - instr;
movi m m: ma~eaddr,naddrn -. nstr;
mov m m: rnemaddr,eaddr - instr;
mov m ri: memaddr~regaddr -. instr;
may m ri: memaddrregaddr in .str

mov m rid: memaddr,regaddr,nat - instr;

moy m d: memaddr,dregaddr - instr;
movpcrpcr: int,iflt -instr;

132

movpxr r. int,regaddr -~instr;

movjicr ri: int,regaddr- instr;
xnovpcr rid: int,regaddr,int - instr;
movpcr ridn: int,regaddr,nat,int -~ instr;
inovycr d: int,dregaddr -~ instr;
mov r m: regaddrmemaddr - instr;
mov_!_cr. regaddrint - instr;,
may r r: regaddr,regaddr -. instr;
moy r r: regaddrregaddr -. instr;
may r rid: regaddr,regaddrint - instr;
may r ridn: regaddr,regaddrnat,jnt - instr;
may r d: regaddr,dregaddr - instr;
movrnm: regaddrmemaddr - istr;
mov nipcr: regaddr,int -~ instr;
mov nir: regaddrregaddr -. nstr;
mov ri ri: regaddr,regaddr -. instr;
may ri rid: regaddr,regaddr,int - instr;
mov ri ridn- regaddrregaddr,nat,int - instr;
may ri d. regaddrdregaddr - instr;
may rid mF regaddr,int,memaddr - instr;
may rndpcr: regaddr,int,int -~ instr;
mov rid r: regaddr,int,regaddr -instr;

mov rid ri: regaddr,int,regaddr -. instr;
mov rid rid: regaddr,int,regaddr,int - instr;
may rid ridn: regaddr,int,regaddr,nat,int -~ instr;
mov rid d: regaddr,int,dregaddr - instr;
moi' ridn in. regaddrnat,int~inemaddr - instr;
mov ridnpcr: regaddr,nat,imt,int - instr;
may ridn r: regaddr,nat,int,regaddr -'instr;

moy ridn ri: regaddrnat,int,regaddr -~instr;

moy ridn rid: regaddr,nat,int,regaddrint - instr;
mov ridn ridi: regaddr,nat,int,regaddrint,int - instr;
may ridn d: regaddr,nat,int,dregaddr - instr;
may d m: dregaddr,meinaddr -~ instr;
moy d~pcr: dregaddrint - instr;
may d r: dregaddr,regaddr -. instr;
may d ri: dregaddrregaddr -instr;

may d rid: dregaddr,regaddrint - inscr;
may d ridn: dregaddr,regaddr,nat,mnt - instr;
mov d d: dregaddr,dregaddr - instr;
push i: val,stkaddr - instr;
push-m: rnemaddr,stkaddr - instr;
pushpcr: int,stkaddr - instr:
push r: regaddr,stkaddr -. instr;
push ri: regaddr,stkaddr -. instr;
push rid: regaddr,int,stkaddr - instr;
push ridn: regaddr,nat,jnt,stkaddr - instr;
push d: dregaddr,stkaddr - instr;
pap_x: stkaddr - instr;
pap_m: stkaddr,memaddr - instr;
pop~pcr: stkaddr,int - instr;
pop r: stkaddr.regaddr - instr;
pop ri: stkaddr,regaddr - instr;
pop rid: stkaddrregaddr,int - instr;
pap ridn: stkaddr.regaddr,nat,int -. instr;
pap-d: stkaddr,dregaddr - instr;
flap: -. instr;
stop: *-irstr;

Jmp: memaddr - instr;
jmp i: memaddr - instr;
jmp r: regaddr -. instr,

133

bra: int -. instr-
bra r regaddr -. mnstr;
if: relop,regaddr,regaddr,memaddr -. instr;
ifi: relop,regaddr,vai,memaddr -. instr;
ifte: relop,regaddr,regaddr,memaddr,memaddr -. instr;
iftei: relop,regaddr,val,memaddr,memaddr - mstr;
ifjpcr: relop,regaddr,regaddr,int -~ instr;
ifipcr: relop,regaddr,val,int - instr;
ifte~pcr: relop,regaddr,regaddrint,int - instr;
iftei~pcr: relop,regaddr,vaI,int,int - instr;
test: bop,regaddrmemaddr -~ instr;
testmn: bop,memaddr,memaddr --+ ixistr;
teste: bop,regaddr,memaddr,memaddr -~ instr;
testme: bop,mernaddr,memaddr,mernaddr -. instr;
testpcr: bop,regaddr,int - izistr,
testm~pcr: bop,mnemaddr,int -. instr;

* testepcr: bop,regaddr,int,int -. instr;.
testmne~cr: bop,memaddr,int,int -. instr;
jsr: memaddr,stkaddr - istr;
jsri: memaddr,stkaddr - instr;
jsr r: regaddrstkaddr - instr;
bsr: int,stkaddr - instr;
bsr r: regaddr,stkaddr - instr;
rts: stkaddr - instr;
open: stkaddr - instr,
close: stkaddr -* instr,.
read: stkaddr -. instr;
write: stkaddr -. instr-,

end extend;
end instructions;

134

apec anstate
15

extend
boolean,
natural,
integer,
str.chartype,
memaddress,
regaddress,
stkaddress,
dregaddress,
fles,
identifiers,
typing

with
sort

state;
primitive

fetchm: memaddr,state - val; /* memory */

fetchr: regaddr,state - val; /* register /
fetchd: dregaddrstate -* val; /4 display register */
fetchdwin: dregaddr,state - val; /4 display window */
fetchmtr: mtrattr,state - val; I* monitor attribute */
storem: val,memaddr,state - state;
storer: val,regaddr,state -. state;
stored: val,dregaddr,state - state;
storedwin: val,dregaddr,state - state;
storedmtr: val,mtrattr,state - state;
initam: - state; /* initialize machine */
initstk: stkaddr,state -- state; /* initialize stack */
topstk: stkaddr,state - val; /* get top val of stack 4/

pushstk: val,stkaddr,state - state; /* push stack */
popstk: stkaddr,state - state; /4 pop stack 4/

lalloc: nat,state - memid; /* get memory block from heap 4/

lfree: memid,state - state; /4 free memory block */
indir: nat,memaddr -. memaddr; /* memaddr for n levels of indirection */

infile: file,state -. val; /* read from file 4/

outfile: val,file,state - state; /* write to file 4/

openfile: str.char,file,int,int,state - state; /* open file 4/

closefile: file,state -- state; /* close file *
rmode: -. /4 read mode /
wmode: int; /* write mode */

rwmode: - int: 7 read,'write mode / *|
openerr: int; /" open error
openok: int; /* open ok */
valdata: int; ile opSw' AM sort val data
chardata: - int; '* file ops w character data */

hidden
op

* active - lalloc flag

true when memory block is allocated w, lalloc
* false initially and after memory block released with Ifree

used to prevent offsetting into non-allocated memory

active: memidstate - bool:
axiom

if whattype(v) != formtype() then
stored(v,a,q) undef;

endif;
if whattype(v) pnttype() then

storedwin(v,a,q) -undef;
endif;,
if whattype(v) != nattype()
then

storemtr(v,xpixeba),q) = undef;,
storemtr(v,ypixelso,q) = undef;,
storemtr(v,hscmsizeo,q) = undef;
storemtr(v,vscrnsizeo,q) = undef;,
storemtr(v,intenscapblO,q) -undef;,
storemtr(v,colorcapblO,q) = undef;

endif;,
if whattype(v) != colortype() then

storemtr(v,badcgndo,q) = undef;,
endif;
if whattype(v) != dregaddr() then

storemtr(v,dselecttj,q) = undef;,
endif;
topstk(s,initstk(s)) =undef;

popstk(s,initstk(s)) =undef;

popstk(s,initamo) =undef,

stateaxioms(m,memaddr);
stateaxioms(r,regaddr);
stateaioms(d,dregaddr);
stateaxioms(dwin,dregaddr);
stateaxioms(mtr,mtrattr);
topstk(s,pushstk(v,s,q)) v;
popstk(s,pushstk(v,s,q)) q;
active(m,initaimo) = false;
active(Ialloc(n,q),q) =true;

active(m,lfree(m,q)) =false;

active(m,storer(v,a,q)) = active(m,q);
active(m,storem(v,a,q)) =active(m,q);

act ive(m,stored (v,a,q)) =active(m,q);

active (m,storedw in(v,a,q)) = active(m,q);
active(m,storexscrnsize(v,a,q)) =active(m,q);
active(m,storeyscrnsize(v,a,q)) = active(m,q);
active (m,storein tenscapbl(v,a,q)) =active(m,q);

active(m,storecolorcapbl(v,a,q)) =active(m,q);

active(m,storebackgnd(v,a,q)) =active(m,q);

active (r,storedregaddr(v,a,q)) =active(m,q);

active(m,initstk(aq)) = active(m,q);
active(m,pushstk(v,a,q)) =active(m,q);
active(m,popstk(a,q)) =active(m,q);

active(m,outile(v~f,q)) =active(m,q);

active(m,openfile(s,fx,y,q)) = active(m,q);
active(m,closefile(f,q)) = active(m,q);
if active(m,q) = false() then

fetc hm (offset (n,m),q) = undef;
endif;,
if active(m.q) = false() then

storem (offset (n,m),q) = undef;
endif;
if ltint(n,ntoi(n2)) =true()
then

offset (n, offset (n I ,startmemnaddr (lalloc (n 2, q)))
offset(

sumint(n,nl),
startmemaddr(iloc(n2,q))

else
offset (n,off set (n l,startmemaddr(lalloc (n2,q)))

136

.-- ~7

undef;
indir(zeronato,m) = m
if whattype(fetchm(indir(n,m),q)) = typeznemaddr()
then

indir(succnat(n),m) - atomofmnemaddr(fetchm(mndir(n,m),q));
else

indir(succnat(n),m) - undef;,
endif;
openfile(s,f,n,openflle(s,fm,x,q)) undef;
closefile(fopenfile(s,fn,x,q)) = q
infile(f,initamo) = undef;
inrile(f,close(d,q)) = undef;
infile(f,openfile(s,f,wmodeo,x,q)) =undef;,

outfile(v,finitwmo) =undef;

outflle(v,fclose(f,q)) =undef;

outfile(v,f,openfile(s,f,rmodeo,x,q)) = undef;
outfile(f,openfile(s,f,m,cbardatao,q)) =undef;

end extend;
end amstate;

spee displaywindow
is

extend
rectangle,
dregaddress

with
* primitive
* op

dwmn: dregaddr -~rct;

axiom
xdimrct(dwin(a)) = IDISPLA YSIZElsuccint(zeroint());
ydimrct(dwin(a)) = IDISPLAYSIZEIsuccint(zerointo);
origin(dwin(a)) =atoxnofpnt(fetchdwin(a,q));

end extend;
end displaywindow;

137

epee am

Iextend

memaddreus,
instructiofltype,
typing,
amstate

with
primitive
op

*prog - AM execution
*corecursive - calls xeq

prog: memaddr,state - state;
hidden
op

*cond - imnplements conditionals
*returns one of two input memnaddrs

* based on bool value

cond: val,memaddr,memaddr - memnaddr;

*xeq - corecursive function
*calls prog
*used for AM execution

xeq: instr,memaddr,state -~ state;
a~dom

prog(a,q) = xeq(atomofinstr(fetchin(a,q),a,q));
cond(valofbool(true()),al ,a2) = al;
cond(valofbool(falseo),al,&2) = a2;
xeq(offst(i,r),mn,q)=

prog(
nextmemaddr(m),
storer(

valofmemaddr(offset(i,atomofmemaddr(fetchr(r~q))),

q

xeq(link(r,n),mn,q)=
prog(

nextmemaddr(m),
storer(

vaiofmemaddr(startmemaddr~lailoc(n~q)))

storem(
fetchr(r,q),
startmnemaddr(lal~oc(n~q),q)

xeq(unljnk(r),mq)
prog(

nextmernaddr(m),
Ifree(

getmemid(atomofmemaddr(fetchr(r,q)))
storer(

fetchm(atoznofmemaddr(fetchr(r~q)),q),

1538

....................................

q

xeq(getdwin(d,r),m,q)=
prog(

nextrnemaddr(m),
storem(

fetchdwin(d,q),
r,
q

xeq(setdwin(r,d),m,q)
prog(

nextmemaddr(m),
storedwin(

fetchr(rq),

q

xeq(getmtr(t,r),m,q)
prog(

nextmemaddr(m),
storer(

fetchmtr(t,q),
r,
q

xeq(setmtr(r,t),m,q)=
prog(

nextmemaddr(m),
storemtr(

fetchr(r,q),

q

xeq(mnonad3(o,rl),m,q)
prog(

nextmemaddr(m),
storer(

applymop(
0.

fetchr(rl ,q)

rl,
q

xeq(monad(o,rl,r2),m~q)
prog(

nextmemaddr(m),
storer(

applymop(
0,

fetchr(rl ,q)

139

~ - .wJ%

r2,
q

xeq(monadi(o,vrl),m,q)
prog(

nextxnemaddr(m),
storer(

applymop(o,v),
rl,
q

xeq(dyads(o,rl,r2),m,q)=
prog(

nextmemaddr(m),
storer(

applydop(
0,

fetchr(rl ,q),
fetchr(r2,q)

r2,
q

xeq(dyadsi(o,v,rl),m,q)=
prog(

nextmemaddr(zn),
storer(

applydop(
0,

fetchr(rl,q)

rl,
q

xeq(dyad(o,rl,r2,r3),m,q)
prog(

nextmemaddr(m),
storer(

applydop(
0,

fetchr(rl,q),
fetchr(r2,q)

r3,
q

xeq(dyadi(o,v,rl,r2),rn,q)
prog(

nextinemaddr(m),
storer(

applydop(
0,

1',

fetchr(ri,q)

140

r2,
q

xeq(traio,zl,r2,r3),mn,q)
prog(

nextmemaddr(m),
storer(

applytop(
0,

fetchr(rl ,q),
fetchrjr2,q),
fetchr(r3,q)

r3,
q

xeq(triadsi(o,v,rl,r2),m,q)
prog(

nextmemnaddr(m),
storer(

applytop(
0,

Vcrrl,)
fetchr(r2,q),

r2,
q

xeq(triad(o,rl,r2,r3,r4),m,q)=
prog(

nextmemaddr(m),
storer(

applytop(
0,

fetchr(rl,q),
fetchr(r2,q),
fetchr(r3,q)

M4,
q

xeq(triadi(o,v,ri,r2,r3),m,q)=
prog(

nextmemaddr(m),
storer(

applytop(
0,

Verr1,)
fetchr(r2,q),

r3,
q

xeq(quads(o,ri ,r2,r3,r4),m,q)

141

A~ ~ ~ 2-2 _,.2

pros(
nextmemaddr(m),
Storfr(

applyqop(
0,

fetchr(rl,q),
fetchr(r2,q),
fetchr(r3,q),

fetchr(r4,q)

r4,
q

xeq(quad(o,rl ,r2,r3,r4,r5),m,q)
pros(

nextmemaddr(m),
Storer(

applyqop(
0,

fetchr(rl ,q),
fetchr(r2,q),
fetchr(r3,q),
fetchr(r4,q)

r5,
q

xeq(sexads(o,rl ,r2,r3,r4,r5,r6),m,q)
pros(

nextmemaddr(m),
Storer(

applysop(
0,

fetchr(rl ,q),
fetchr(r2,q),
fetchr(r3,q),
fetchr(r4,q),
fetchr(r5,q),
fetchr(r6,q)

r6i,
q

xeq(sexad(o,rI ,r2,r3,r4,r5,r6,r7),m,q)=
pros(

nextmemaddr(m),
storer(

applysop(
0,

fetchr(rl ,q),
fetchr(r2,q),
fetchr(r3,q),
fetchr(r4,q),
fetchr(r5,q),
fetchr(r6,q)

07,
q

142

r JI-

xeq(octads(o,rl ,r2,r3,r4,rS,rE,r7,r8),m,q)
prog(

nextmeuiaddr(m),
storer(

applyoop(
0,

fetchr(rl ,q),
fetchr(r2,q),
fetchr(r3,q),
fetchr(r4,q),
Ietchr(rS,q),
fetchr(rE,q),
fetchr(r7,q),
fetchr(rg,q)

r8,
q

xeq(octad(o r 1,r2,r3,r4,r5,r6,r7,rS,r9),m,q)
prog(

nextmemaddr(m),
storer(

applyoop(
0,

fetchr(ri,q),
fetchr(r2,q),
fetchr(r3,q),
fetchr(r4,q),
fetchr(rS,q),
fetchr(r6,q),
fetchr(r7,q),
fetchr(r8,q)

r9,
q

xeq(movi m(v,mi),m,q)
prog(-

nextmemaddr(ni),
storem(v,mi ,q)

xeq(movi pcr(v,i),m,q)=
prog(

nextmemaddy(m),
storern(

V,

offset(i,m),
q

* xeq(movi r(v,r),m,q)
* prog(nextmemaddr(m),storer(v,r,q));

xeq(movi ri(v,r),m,q)
prog(

nextmemaddr(m),
storem(

V,

143

atomofnmmaddr(fetchr(r,q)),
q

xeq(movi rid(v,r,n),mq)
prog(

nextmemaddr(m),
storan(

offset(

atomofmnemaddr(fetcbr(r,q))

q

xeq(movi ridn(v,r,il,i2),m,q) =

prog(
nextmemaddr(m),
storem(

offset(
i2,
idir(

atomofmemaddr(fetchr(r,q))

q

xeq(movi d(v,r),m,q)
prog(nextznemaddr(m),stored(v,r,q));

xeq(mov m m(ml,m2),m,q)
prog(

nextmemaddr(m),
storem(

fetchm(ml,q),
m2,
q

xeq(mov m rjml,r),n,q)=
prog(nex-tmemaddr(m),storer(fetchm(ml ,q),r,q));

xeq(mov m rl(ml,r),m,q)=
prog(

nextmemaddr(m),
storem(

fetchm(ml ,q),
atomofmemaddr(fetchr(r,q))

xeq(mov m rid(ml ,r,n),m,q)
prog(

nextmeniaddr(m),
storem(

fetchm(ml ,q),
offset(

n',

atomofmemaddr(fetchr(r,q))

144

q

xeq(movm ridn(ml,r,il,i2),m,q)
prog(

nextmemaddr(m),
storem(

fetchm(ml,q),
offset(

i2,
indir(

ii,
atomofinemaddr(fetchr(r,q))

q

xeq(movpcrpcr(il ,i2),m,q)=
prog(

nextmemaddr(m),
storerm(

fetc hm (offset (i l,m),q),
offset(i2,m),
q

xeq(niovpcr r(i,r),m,q)
* prog(

nextmemaddr(m),
storer(

fetchm (offset (i,m),q),
r,
q

xeq(movpcr ri(i,r),m,q)=
prog(

nextznemaddr(m),
storem(

fetchm(offset(i,m),q),
atomofmemaddr(fetchr(r,q)),
q

xeq(movypcr rid(i,r,i2),m,q)=
prog(

nextmemaddr(m),
storemn(

fetchm(offset(il ,m),q),
offset(

atomofmemaddr(fetchr(r,q)).

q

xeq(movpcr ridn(i,r,n,i2),m,q)
prog(

nextmemalddr(m),

145

..........................S

Sthm(offsct(il ,m),q),

offset(
i2,
idir(

atomofmnemaddr(fetchr(r,q))

q

xeq(mov m d(m,r),m,q)
prog(nextmemaddr(m),stored(fetchm(ml ,q),r,q));

xeq(mov rm(r,ml),m,q)
prog(nextmemaddr(m),storemifetchr(r,q),mi,q));

xeq(movycr(r,i),m,q)
prog(

nextmemaddr(m),
storein(

fetchr(r,q),
offset(i,m),
q

xeq(mov rr(r,r2),m,q)
prog(nextmemaddr(m),storer~fetchr(rl ,q),r2,q));

xeq(mov rri(r,r2),m,q)=
prog(-

nextmemaddr(t),
storem(

fetchr(rl,q),
atomofmemaddr(fetchr(r2,q)),
q

xeq(mov rrid(r,r2,n),Mlq)=
prog(-

nextmemaddr(m),
storem(

fetchr(rl ,q),
* offset(

atomofmemaddr(fetchr(r2,q))

q

xeq(mov r ridn(rl,r2,il ,i2),m,q)=
prog(

nextmemaddr(m),
storem(

fetchr(ri ,q),
offset(

i2,
indir(

atoznofmemaddr(fetchr(r2,q))

q

146

xeq(mov rd(r,r2),m,q)
prog(nextmemaddr(m),stored(fetchr(rl ,q),r2,q));

xeq(mov ri m(r,ml),m,q)=
prog(

nextmnemaddr(m),
storem(

fetchm(atomofniemaddr(fetchr(r,q)),q),
ml,
q

xeq(mov ripcr(ri),m,q)
prog(

nextmemaddr(m),
storem(

fetchm(atomofmnemaddr(fetchr(r,q)),q),
offset(i,m),
q

xeq(mov ri r(rl,r2),m,q)=
prog(

nextxnemaddr(m),
storer(

fetchm(atomofrnemaddr(fetchr(rl ,q)))

r2,
q

xeq(mov ri ri(r,r2),m,q)=
prog(

next memaddr(m),
storem(

fetchm(atomofmemaddr(fetchr(rl ,q)),q),
atomofmemaddr(

fetchr(r2,q)

q

xeq(mov ri rid(r,r2,n),m,q)=
prog(-

nextmemaddr(m),
storem(

fetchm(atomofmemaddr(fetchr(ri .q)),q),
offset(

atomofmemaddr(fetchr(r2,q))

q

xeq(mov ri ridn(rl~r2,il,i2),m~q)
prog(-

nex tmemaddr(ni),
* storem(

fetchm(atomofmemaddr(fetchr(r1 q)).q),
offset(

i2,

147

* ~ .'>.. . t .r~ b. wnw--.-

indir(

atomofmnemaddr(fetchr(r2,q))

q

xeq(mov ri d(r,r2),m,q)
* prog(

nextmemaddr(m),
stored(

fetchm(atomofmemnaddr(fetchr(rl,q)))
r2,
q

xeq(mov ridrn(r,i,mI),m,q)=
prog(

nextmemaddr(m),
storem(

fetchm(
offset(

i,

atomofmemaddrfetchr(r,q))

q

q

xeq(mov ridypcr(r,il ,i2 J,m,q)=
* prog(

nextmemaddr(m),
storem(

fetchm(
offset(

ill
atomofmemaddr(fetchr(r,q))

q

offset(i2,m),
q

xeq(mov rid r(rI,n~r2),m,q)=
prog(

nextmemaddr(m),
Storer(

fetchm(
offset(

atomofmemaddr(fetchr(ri ,q))

q

r2,
q

148

- - - - - ~ __ Y -. 1 - . .-. . -. -

iceq(niov rid ri(rl,i,r2),m,q)
prog(

nextmemaddr(m),
storem(

fetchmn(
offset(

i,

atomofmernaddir(fetchr(rl ,q))

q

atomofmemaddr(fetchr(r2,q)),
q

xeq(mov rid rid(rI,il,r2,i2),xn,q)
prog(

nextmemaddr(m),
storem(

fetchmn(
offset(

at omofmemaddr (fet chr(rl ,q))

q

offset(
i2,
atomofmemaddr(fetchr(r2,q))

q

xeq(mav rid ridn(rl,il,r2,i2,i3),m.q)
prog(

nextmemaddr(m),
storem(

fetchmn(
offset(

ill
atomofmernaddr(fetchr(rl ,q))

q

offset(
i3,
indir(

i2.
atomofmenaddr(fetchr(r2,q))

q

xeq(mov rid d(rl,n.r2),m,q)=
prog(

nextmemaddr(m),
stored(

fetchrn(
offset(

140

atomofxnemaddr(fetchr(rl ,q))

q

r2,
q

* xeq(mov ridn m(r,n,i,ml),m,q)=
prog(

nextmemaddr(m),
storezn(

fetchm(
offset(

indir(
n,atomofmemaddr(fetchr(r,q))

q

q

xeq(mov ridnpcr(r,n,il,i2),m,q)=
prog(

nextmemaddr(m),
storern(

fetchm(
offset(

ii,
indir(

atomofmemaddr(fetchr(r,q))

q-

offsetW2,m),
q

xeq(mov ridn r(r 141 ,i2,rZ),m,q)
* prog(

nextmemaddr(m),
storer(

fetchm(
offset(

i2,
indir(

atoniofmemnaddr(fetchr(ri ,q))

- q

r2,
S.. q

150

.I ~**

xeq(mov ridn rirl,il,i2,r2),mlq)
prog(

nextmemeaddr(zn),
storam(

fetchm(
a offset(

i2,
indir(

atomofmemaddtr(fetchr(rl,q))

)l
q

atomofmnemaddr(
fetchr(r2,q)

q

xeq~mov ridn rid(rl ,iI ,i2,r2,i3),m,q)
prog(

nextmemaddr(m),
storem(

fetchm(
offset(

i2,
indir(

atomofmemaddr(fetchr(rI ,q))

q

offset(
i3,
atomofmemaddr(fetchr(r2,q))

q

xeq(m'ov ridn ridn(rl,il,i2,r2,i3,i4),m,q)=
prog(

nextmemaddr(m),
storemn(

fetchm(
offset(

M2
indir(

atomofinemaddr(fetchr(ri .q))

q

offset(
i4,
indir(

i3.
atomofmemaddr(fetchr(r2.q))

151

ir 'IT-. s-r-.nNr V7

q

xeq(mov ridin d(rl,il,i2,r2),m,q)
prog(

nextmemaddr(m),
stored(

fetchm(
S offset(

i2,
indir(

ii,
atoniofmemaddr(fetchr(rl,q))

q

r2,
q

xeq(mov d rn(r,ml),m,q)=
prog(nextmemaddr(m),storem(fetchd(r,q),mI ,q));

xeq(mov dpcr(ri),m,q)
prog(

nextmemaddr(m),
storem(

fetchd(r,q),
offset(i,m),
q

xeq(rnov d r(rl,r2),m,q)
prog(nextmeznaddr(m),storer(fetchd(r1 ,q),r2,q));

xeq(mov d ri(rI,r2),m,q)
prog(

nextmemaddr(m),
storem(

fetchd(rl ,q),
atomofmemaddr(fetchr(r2,q)),
q

xeq(mov d rid(rl,r2,n),ni,q)=
prog(

nextmemaddr(xn),
storerm(

fetchd(rJ .q),
offset(

% atomofmemaddr(fetchr(r2,q))

q

xeq(mov d ridn(rl,r2,,il,i2),m,q)
prog(

nextmemaddr(m),
storeln(

fetchd(rl ,q),

'5 152

offset(
U2,
indir(

atomofmnemaddr(fetchr(r2,q))

q

xeq(mov dd(r,r2),m,q)
prog(n xtmemaddr(m),stored(fetchd(rl,q),r2,q));

xeq(push(i,s),m,q) -
prog(nextmemaddr(m),pushstk(v,s,q));

xeq(push m(mI,s),m,q)=
prog(nextmemaddr(m),pushstk(fetchm(ml ,q),s,q));

xeq(push~pcr(i,s),m,q)=
prog(

nextmemaddr(m),
pushstk(

fetchm(offset(i,m),q),

q

xeq(push r(r,s),m,q)=
prog(nextmemaddr(m),pushstk(fetchr(r,q),s,q));

xeq(push ri(r,s),m,q)
prog(

nextmemaddr(m),
pttshstk(

fetchm(atomofmemaddr(fetchr(r,q)),q),

q

xeq(push rid(r,n,s),m,q)=
prog(

nextmeniaddr(m),
pushstk(

fetchm(
offset(

atomofmemaddr(fetchr(r,q))

q

S,

q

xeq(push ridn(r,iI,i2.s),m,q)
prog(

nextmemaddr(m),
pushstk(

fetchm(
offset

i2,
indir(

ii,
atomofmeniaddr(fetchr(r,q))

it53

q

q

xeq(push d(r,s),m,q)
prog(nextmemaddr(m),pushstk(fetchd(r,q),s,q));

zeq(pop__(s),m,q)=
prog(nextmemaddr(m),popstk(s,q));

* xeq(popmy(s,ml),m,q)
prog(

nextmemaddr(m),
popstk(

S,

storem(
topstic(s,q),
ml,
q

xeq(poppcr(s,i),m,q)
prog(

flex tmemaddr(m),
popstk(

3,

storem(
topstk(s,q),
offset(i,m),
q

xeq(popE(s,r),m,q)
prog(

nextmemaddr(m),
popstc(

storer(
topstk(s,q),

q

xeq(popri(s,r),m,q)=
prog(

nextmemaddr(m),
popstk(

S,

storem(
* topstk(s,q),

atoniofmemaddT(fetchr(r,q)),
q

xeq(popid(s,r,n),m,q)

154

prog(
nextmemaddr(m),
popatk(

8,
storem(

topstitts,q),
offset(

atomofmnemaddr(fetchr(r,q))

q

xeq(pop ridn(sr,il,i2),m,q)
prog(

nextmemaddr(m),
popstk(

S,
storem(

topstk(s.q),
offset(

iz,
indir(

atomofmemaddr(fetchr(r,q))

q

xeq(pop d(s,r),m,q)
prog(

nextmemaddr(m),
popstk(

8,
stored(

topstk(s,q),

q

xeq(nop,m,q) =pTog(nextmemaddr(m),q);

xeq(stop,m,q) =prog(m,q) =q;
xeq(jmp(mi),m,q) = prog(rnl,q);
xeq(jmp i(mi),m.q) =prog(atomofmemaddr(fetchm(m i.q)).q);
xeq(jmpE(r),m,q) = prog(atomofmemaddr(!etchr(r.q)).q);
xeq(bra(n),m,q) = prog (off set(n.nextmnem addr(m)),q);
xeq(bra r r,m,q) = prog(off set (atomofint ((etc hr(r~q)).nex tmem addr(m)),q);
xeq(if(o,rI .r2,ml),m~q)=

prog(
cond(

applyrop(
0,

fetchr(rl ,q),
fetchr(r2,q)

ml,
nextmemaddr(m)

'55

q

xeq(ifl(o,vmin),z,q)
prog(

cond(
applyrop(

0,

V fetchr(r,q),

)lv

ml,

nextmemaddr(m)

q

xeq(ifte(o,rl,r2,ml,m2),m,q)=
prog(

cond(
applyrop(

0,

fetchr(rl,q),
fetchr(r2,q)

ml,
M2

q

xeq(iftei(o,r,v,ml,m2),mn,q)=
prog(

cond(
applyrop(

0,

fetchr(r,q),
v

m2

q

xeq(if~pcr(o,rl ,r2,n),m,q)=
prog(

cond(
applyrop(

0,

fetchr(rl,q),
fetchr(r2,q)

offset (n,nextmemaddr(m)),
nextmemaddr(m)

q

xeq(ipcr(or,v,n),m,q)
prog(

cond(
applyrop(

0,

fetchr(r,q),

I56

offset(n,nextmemaddr(m)),

nextmemaddr(m)

q

xeq(iftepcr(o,rl,r2,il,i2),m,q)=
prog(

cond(
applyrop(

0,
fetchr(rl ,q),
fetchr(r2,q)

offset (il ,nextmemaddr(m)),
offset(i2,nextmemaddr(m)

q

xeq(ifteiypcr(o,r,1r,il,i2),m,q)=
prog(

cond(
applyrop(

0,
fetchr(r,q),
v

offset(il ,nextmemaddr(m)),
offset(i2,nextrnemaddr(m))

q

xeq(test(o,rl,mI),M,q)
prog(

cond(
apply bop(o,fetchr(rl ,q)),
ml,
nextmemaddr(m)

q

xeq(testm(o,m2,ml),m,q)=
prog(

corid(
applybop(o,fetchm(m2,q)),
mI,
nextmemaddr(m)

q

xeq(teste(o,rl,mJ,ni2),ni~q)=
prog(cond(applybop(o,fetchr(rl ,q)),ml1,m2) ,q);

xeq(testme(o,m3,ml,m2),m,q) =

prog(cond(applybop(o,fetchm(m3,q)),Yn 1 ,m2),q);
xeq(testpcr(o,rl ,n),m,q)=

prog(
cond(

applybop(o,fetchr(rI .q)),
offset (n,nex tmem ad dr(m)),
nextmernaddr(m);

157

q

xeq(ttatmycr(ozm2,n),njq)
prog(

cond(
applybop(o,fetchm(m2,q)),
offset(n,nextmemaddr(m)),
nextmemaddr(m)

q

xeq(tetepcr(o,rl,il ,i2),m,q)
prog(

cond(
applybop(o,fetchrrl,q)),
offtet(il ,nextmemaddr(m)).,
offset(i2,nextmemaddr(m))

q

xeq(testme~cr(o,m3,i1 ,i2),m,q)=
prog(

cond(
applybop(o,fetchm(m3,q)),
offset (l ,nextxnemaddr(m)),
offiet(i2,nextmemaddr(m))

q

xeq(jsr(ml,s),m,q)=
prog(ml,pushstk(valofmemaddr(nextmemaddr(m)),s,q));

xeq(jsr_(ml,s),m,q)
prog(

atomotmernaddr(fetchm(ml ,q)),
pushstk(valofiniemaddr(nextmemaddr(m)),s,q)

xeq(jsr r(r,s),m,q)
prog(

atomofmemaddr(feitchr(r,q)),
pushstk(valofmeznaddr(nextmemaddr(m)),s,q)

xeq(bsr(n,s),m,q)=
prog(

offset (n,nextmemaddr(m)),
pushstk(valofmemaddr(nextmemaddr(m)),s,q)

xeq(bsr r(r,s),m,q)=
proi(

offset(
atomofint (fetchr(r,q)),
nextmemaddr(m)

pushstk(valofmemaddr(nextrnemaddr(m)),s,q)

xeq(rts s,m,q)=
prog(atomofzmemaddr(topstk(s,q)),popstk(s,q));

xeq(open(s),m,q)=
prog(

nextmemaddr(m),
openfile(

158

P.--*~.--. - -- ~

atomofstr.chaz(topstk(s,popstk(s,popstk(s,popstk(s,q)))),
atomoffile(topstk(spopstk(s,popstk(s,q))),
atomormt(topstk(s,popstk(sq)))
atoznofint(topstk(s,q)),
popstk(s,q)

xeq(close(s),m,q)
prog(

nextmemaddr(m),
closefile(

atomoffile(topstk(s,q)),
popstk(s,q)

xeq(read(s),m,q)=
prog(

nextmemaddr(m),
storem(

infile(
atomoffile(topstk(s,popstk(s,q)))
popstk(s,q)

atomofmnemaddr(topstk(s,q)),
popstk(s,q)

xeq(write(s),m,q)=
prog(

nextmemaddr(m),
outflle(

fetchm(
atomohmemaddr(topstk(s,popstk(s,q)))
popstk(s,q)

atomoffile(topstk(s,q)),
popstk(s,q)

end extend;
end am;

1L59

APPENDIX C: A SIMPLE ASSEMBLER FOR AM

1. Introduction
AMASM is an assembler which produces a relocatable load module for AM,

an abstract machine interpreter. This document was adapted from Yurchak
(1984), Appendix C, and constitutes the reference manual for Version 2.0-Z100.
It provides a description of the syntax and semantics of the assembler as well as a
description of the salient features of the AM machine and a definition of the
opcodes executed by AM.

AMASM is, to the extent possible, written in portable C. The parser and
scanner were produced using the Unix YACC and LEX utilities. The output
from these utilities require several patches to allow compilation on the Z100 using
Lattice 'C'. Readers desiring to port the code to other machines may have to
make slight changes to "defines". In this implementation, longs are assumed to
occupy 32 bits, both int and short - 16 bits, and char - 8 unsigned bits. Note:
if the int size changes, then the infile and outfile functions in amstate.c must be
changed.

The input syntax of AMASM is similar to that of other assemblers. It
supports symbolic addresses and constants and a typical set of directives, but has
no macro capabilities. The assembler accepts an ASCII source file created on a
conventional text editor and produces az output file containing relocation
information and AM opcodes. Invoking AM causes the output file "a.am" to be
loaded and executed.

2. Differences from Version 1.0
The primary difference between AM (version 2.0-Z100) and AM (version 1.0-

Z100) and their corresponding AMASM's, is the bit-mapped color display
resource extension. The monitor commands are fully integrated into the AM
instruction set. The form (image) data type is provided along with other
supporting data types. A full set of operators allow display images to be directly
manipulated.

3. Usage

AMASM is invoked with the following command line syntax:

amasm [-t] [-xj [-sJ [-] file ...

AMASM produces a single load module "a.am", which forms the input to the
AM loader. The optional "-t" switch sends a debugging trace to "stdout" , the
"-x" switch provides an extended version of the trace, and the "-s" switch
provides trace of the recognized scanner tokens. The optional "-I" switch
generates the listing and cross-reference file "a.x". Appended to this file is a hex
dump of "a.am".

160

'oN°_

4. Lexical Conventions
Assembler tokens include identifiers (alternatively, "symbols" or "names"),

literal constants, operators and delimiters.

4.1. Identifiers
Legal identifiers are described by the following regular expression:

[A- Za-zjA- Za-zo-9_.*

Identifiers consist of a letter or underline " " followed by a string of zero or more
letters, decimal digits and underlines. Upper and lower case are distinct.
Identifiers may represent symbolic constants, instruction mnemonics, labels,
addresses and type names.

4.2. Operators
.The following are considered to be operators:
_--- !__- < < --- > > ---

+- /%&l
The meaning of the above symbols varies with context.

4.3. Literal Constants
Decimal and hexadecimal constants are described by the following regular

expressions respectively:
1 [o-91+$[0-9A-Fa-fl+

Decimal constants consist of an optional sign followed immediately by one or
more decimal digits. Hexadecimal constants consist of the character "$" followed
immediately by a string of one or more decimal digits and upper or lower case
letters "A" through "F". Numeric constants may represent addresses, integer
and natural numbers, boolean and character values.

Character constants consist of a single quote "'", followed either by an ASCII
character, that is not a carriage return/linefeed or a numeric constant, followed
by a closing single quote.

String constants consist of a string of zero or more ASCII characters (except
carriage return/linefeed) enclosed in double quotes.

4.4. Blanks
Blanks and tabs are ignored by the assembler except where required to

separate adjacent constants or identifiers.

4.5. Comments
The character ""produces a comment. The assembler ignores all further

characters on the line up to the terminating carriage return/linefeed.

4.6. Delimiters
All other characters found in the input stream are treated as delimiters.

161

5. Statements
A source program is composed of a sequence of statements, one statement per

line. There are 3 kinds of statements: directives, instructions and null.
Instructions and null statements may be preceded by a label. Directives may

(in some cases, must) be preceded by an identifier.

5.1. Labels & Identifiers
A label consists of an identifier followed by a colon ":". When the assembler

encounters a label, the effect is to assign the current value of the location counter
to the name.

An identifier preceding a directive is assigned a value whose type depends
upon the directive. For instance, the equate directive assigns a typed value to
an identifier, while the define storage directive assigns the current value of the
location counter.

'Neither labels nor identifiers may be redefined within a single source file.

5.2. Null Statements
A null statement is an empty statement. Although ignored by the assembler,

null statements may be preceded by a label.

5.3. Directive Statements
A directive is a command to the assembler to perform some sort of operation

which does not involve emitting an executable instruction. Typical directives
(also known as "pseudo ops" or "pseudo instructions") allocate storage for
variables, make names within the current module visible to other modules and set
the location counter. Directives also produce instructions for the AM linker and
loader.

Directives consist of a keyword followed by zero or more arguments,
depending upon the context. Directives and their syntax are described in more
detail in Section 12.

5.4. Instruction Statements
Instruction statements produce the code which is ultimately executed by AM.

An instruction may be preceded by a label, and consists of a keyword followed by
zero or more arguments, depending upon context.

The AM instruction set and its syntax will be described in detail in Section
14.

6. The Machine
Because AM differs from conventional machines in a number of important

ways. some discussion is necessary before introducing the instruction set.
Outwardly similar to a number of well known examples, AM instructions form an
unconventional set of primitive operations which implement a formally specified
semantics. The reasons for this are described below.

AM uses a tagged architecture. Thus, each data element contains, within it.
information which uniquely identifies a finite set of legal operations which may be
performed upon it, as well as a range of legal values it may take on. This set of

162

" ,

operations and values is known formally as a data type. AM supports a number
of data types. An element of a particular data type will be referred to
throughout the rest of this manual as an atom.

AM physical resources are partitioned into segments. There are several
types of segments, and these together form a conventional overall model of the
familiar stored program computer. There are memory segments (primary
storage), register segments (high-speed memory), display register segments (bit-
mapped display memory), stacks, a monitor (display terminal attributes) and file
segments (secondary storage). Segments are further partitioned into discrete,
addressable elements (alternatively, "cells") which will contain atoms during the
execution of a program. These elements will be referred to repeatedly as typed
values. The reason for the distinction between atoms and values will become
more clear shortly.

AM is the finite implementation of a formal specification. As such, data
eleffients and the operations which can be applied to them must reflect a
mathematical consistency not required by conventional architectures. Since all
operations which affect the state of the machine must be able to "communicate"
with each other during the execution of a AM program, they must do so using a
common object. This object is a value. The memory, registers, display registers.
stack, and files all hold values. Store, fetch, execute, read, write -- any
operations which change the state of the machine -- all operate on values (i.e.,
storage cells). All other operations, such as "add", "multiply", "and", "or", work
on atoms.. Atomic operations in AM correspond to those which take place in the
temporary registers of the arithmetic and logic unit of a conventional processor.

6.1. Configuration
A unique feature of AM is the ease with which it is possible to reconfigure

the machine by partitioning the physical resources in different ways. A typical
configuration would be something like this:

2 memory segments
1 register segment (with a useful number of registers)
1 display register segment (with one or two registers)
1 stack
1 monitor (only one is permitted)
16 files

The configuration chosen should provide a good indication of the types of
programs AM is intended to execute.

Note that, in conventional machines, stacks are implemented in primary
storage. This constitutes an overloading of data structures which obscures the
intent of the user of these structures. It also creates a semantic nightmare for the
specification writer. In AM, stacks take their rightful places as separate entities
with easy to understand properties.

In addition to the resources listed above, AM has a conventional program
counter.

163

.- 4.. -.. ~~~~ ~ .. ._. _ , ., . _ . , . . , . . - . . . t .. -- . , - . . .

6.1.1. Memory
AM memory is partitioned into segments which may be of unequal but fixed

length. A program and its data will reside in memory segments. It is not
necessary that code and data share the same segment, nor is it required that code
and data be contiguous. The loader will determine from the origin directive
where to load code and data values.

The AM heap is implemented as a set of operations which allocate and
deallocate memory segments.

AM has a rich set of addressing modes which interact with a powerful move
instruction which allows the programmer to move a value from "anywhere to
anywhere".

6.1.2. Registers
AM registers form the high-speed storage into which operands are placed.

'All atomic operations, such as add, divide and poffst, require operands to be
in registers. Form operations are an exception. Their operands may be in either
a register or a display register.

6.1.3. Display Registers
The form is the atomic data type that represents an image. Like any other

atomic data type, it may be placed in any memory, register, stack or file cell. A
form can not be "viewed" by the monitor unless it is in a display register.

Display registers may only contain form values. Each display register has its
own window which is fixed in size but with a variable origin. The display
window determines what part of the form is "viewed" by the monitor.

In general, display registers may be partitioned into multiple segments.
However, the hardware on most machines will only support one segment of one or

two registers. A segment of two display registers is equivalent to the idea of a
"front" and "back" plane.

6.1.4. Monitor
The monitor represents a set of terminal attributes which are part of the

"state of the machine". The attributes: vertical and horizontal number of pixels,
vertical and horizontal screen dimensions, intensity capability and color planes
are fixed for any terminal. The background color and display register selection
attributes are programmable.

6.1.5. Stack
The AM stack is conventional in every respect except that it is impossible to

access any value except the top. Thus, frames are implemented on the heap. not
the stack.

AM has a typical set of push and pop instructions for operating on stacks.

6.1.6. Files
Input/output is implemented rather arbitrarily along the lines of system calls

to an operating system and should not be considered part of AM itself.
Instructions are provided to open, close, read to and write from a file.

164

-- :.%-- I. I, '.r -w IV- l- -7.7

L

7. Atoms
An atom is a component of a data type. The assembler recognizes the

following types of atoms:

boolean
natural
integer
character
string
intensity
color
point
rectangle
form
font
ptblt
memory address
register address
display register address
monitor attribute
stack address
file address

As operands to instruction mnemonics, these atoms form the familiar set of literal

and symbolic constants found in typical assembly language programs.
With certain exceptions, atoms may appear in the form of literal constants:

100
SdOfl
'a '

"this is a string atom"

They may also appear as symbols which take on the value of the atom in some
other part of the source program. With few exceptions, anywhere a literal
constant may be used, a symbolic constant of the appropriate type may also be
used.

The assembler distinguishes between types of atoms using syntax and
context. The syntax is described below.

7.1. Boolean
A boolean atom has only two values, true and false. These values are

represented to the assembler by the decimal or hexadecimal constants for 1 and
0, respectively.

0
1
$1
$0

are legal boolean atoms.

165

O~ ' * , "° " " ' "
°

° "
° "

"• - -. . .• "° " "- " "" '° "- " " -" " " * " " " . . ." " .
o "

- ,
°

-"
- °

7.2. Natural
This type represents, as the name implies, the natural (unsigned) numbers.

Legal values range from zero to positive infinity. Natural numbers are
represented to the assembler as decimal or hexadecimal constants whose values
are greater than or equal to zero.

0
$2f5
240

are legal natural atoms.

7.3. Integer
Integers range from negative to positive infinity, and are specified as

hexadecimal or signed or unsigned decimal constants.

--250
0
$ed67f
+10

are legal integer atoms.

7.4. Character
Character atoms may take values defined by the ASCII character set. They

are represented to the assembler as literal character constants.

l "r"

are legal character atoms.

7.5. String
String atoms are composed of zero or more concatenated ASCII characters.

They are specified as literal strings.

"this is a legal string atom"
f, l

are both legal string atoms.

7.6. Intensity
An intensity atom ranges from 0 to 199 decimal. It is represented as a

unsigned decimal or hexadecimal constant preceded with the character
represents the null intensity which is used to construct the null color.

'0
"% "89

,199

are legal intensity atoms.

:'- 166

' ,.............*. . ..

". ••-.•..".".---............... ,.",• ,."...'.'.* % ,...."

7.7. Color
A color atom is a composite of a red, green and blue intensity. It is

represented as an ordered triple of unsigned decimal or hexadecimal constants
separated by commas ",", enclosed within parentheses "(" ")" and preceded with
'"#". The nullcolor provides the concept of background and transparency. It is
represented as the "@" enclosed within parentheses and preceded with "#".

#(0,0,0)
(70,0,190)

are legal color atoms.

7.8. Point
Points are a composed of integer pairs. The z and y coordinates correspond

to the first and second integers respectively. Increasing integer values represents
positions shifted right and up. A point is represented as an ordered pair of
decimal or hexadecimal constants separated by a comma "," and enclosed within
parentheses "(" ")".

(0,0)
(4,1047)
(-8,25)
(-50677,-293399)

are legal point atoms.

7.9. Rectangles
Rectangles are composed of a pair of points which represent the opposing

corners. A rectangle is represented as an unordered pair of points separated by
a colon ":" and enclosed with in square brackets "1" "]".

[(0,0):(0,0)]
[(0,0):(50,45)]
[(50,45):(0,0)]
[(-20,-20000) :(30,59)]

are legal rectangle atoms.

7.10. Form
A form atom is a composite structure. It has a two dimensional size and a

color map which is an array of colors with each color corresponding to a point in
its area. The form atom has no literal constant representation., It is created
using the operator, newfrm, and modified using other operators.

7.11. Font
A font atom is an array of forms. The font atom has no literal constant

representation. It is constructed from the operator, newfnt, and modified using
other operators.

167

,oV

V- -C." t7': :.: " :':':' ''':-:',:-:- ':':': : :'';. ''''''''' ''''::: :: ::':::::.'.'." / "':':': .'. .' " . - ':'

7.12. Ptblt
A ptblt atom is a composite of three rectangles and a natural which

represents a copy rule. The ptblt atom has no literal constant representation. It
is constructed from the operator, newbit, and is modified using other operators.

7.13. Memory Address
Memory address atoms consist of two components: a segment address, and an

element address. Memory addresses are represented as an ordered pair of
unsigned decimal or hexadecimal constants, separated by a colon ":" and enclosed
within parentheses "(" ")"

(0:100)

represents memory segment 0, element 100.

(2:410)

repiesents segment 2, element 16.
Segment and element addresses start at 0. The number and size of available

memory segments depends upon the current configuration of AM.
Labels are considered memory address atoms, as are names which appear to

left of the define storage and define constant directives.

7.14. Register Address
Register address atoms have a syntax identical to that of memory addresses

except that a lower case "r" is prepended to the address.

r(0:3)

refers to register segment 0, register 3.
Segment and element addresses start, as with memory addresses, at 0. The

number of register segments, and the number of registers within each segment,
varies as determined by the current AM configuration.

7.15. Display Register Address
Display register address atoms have a syntax identical to that of register

addresses except that the lower case "r" is replaced with a lower case "d".

d(0:1)

refers to display register segment 0, register 1.
Segment and element addresses start at 0. The number of display register

segments, and the number of display registers within each segment, varies as
determined by the current AM configuration.

7.16. Monitor Attribute
The monitor consists of eight attributes values which are:
x - represents number of horizontal pixels (natural)
y - represents number of vertical pixels (natural)
v - represents screen height in inches (natural)
h - represents screen width in inches (natural)
i- represents intensity capability (natural)

168.

c - represents number of color planes (natural)
b - current background color (color)
d - selected display register to view

(display register address)

A monitor attribute is represented by a dash "-" followed by one of the above
characters for the indicated attribute.

-x
-y
-b

are all legal monitor attribute atoms.

7.17. Stack Address
A stack address has only one component: the segment address. Stack

addresses are specified by prepending a lower case 'Is" to an unsigned decimal or
hexadecimal constant enclosed within parentheses.

s(2)

refers to stack segment 2.
Stack addresses begin at 0. The number of stacks depends upon AM's

configuration.

7.18. File Addresses
File address atoms may not appear in a program except within typed values.

File address atoms are represented as unsigned integer or hexadecimal constants.
File addresses start at 0. The number of files which may be open at one time

is- determined by the current AM configuration. The first three file addresses
(0,1,2) are normally opened automatically by AM when a program is loaded.

8. Typed Values
Some of the atomic types may also appear as typed values in certain

instructions and directives. A typed (immediate) value is represented as an
ordered pair consisting of a keyword representing the type, and the atom itself,
separated by a comma "," and enclosed within curly braces "{""}".

{int,100}

represents the integer value 100.

{addr,(1:100)}

represents memory address value (1:100).
A list of the types which may be used as immediate values alongside the

corresponding keywords appears below:

bool - boolean
nat - natural
int - integer
char - character
string - character string

169

_7

intens - intensity
color - color
pnt - poiit
rct - rectangle
addr - memory address
file - file address

Immediate values are used, as in conventional assembly languages, for loading
constants into cells, initializing storage, pushing parameters to subroutines on the
stack, and so on.

A special syntax may be applied when expressing typed values for the define
storage and define constant directives. The type keyword may be followed by
a list of atoms of the appropriate type, separated by commas.

{int,1,2,3,4,5,6,7,8}

shows an example of this.

9. Expressions
An expression may be substituted anywhere an integer or natural atom is

called for. The expression must be a sequence of integer/natural atoms (and
symbolic constants equated to integer/natural atoms) separated by operators and
grouping symbols which evaluates to an atom of the type called for where the
expression is used.

9.1. Expression Operators
Legal operators are (in order of increasing precedence):

-or

& -and
+ - - addition and subtraction
* / % - multiplication, division, and modulus
- - unary minus

Expressions may be grouped using parentheses "(" ")"

10. Notation
Throughout the rest of this manual, the following notational conventions will

be used to describe the syntax of directives and instructions.

A - atom
V - typed value
N - natural atom
I - integer atom
M - memory address atom
R - register address atom
D - display register address atom
C - either a display or a high speed *register address atom
T - monitor attribute atom
S - stack address atom
< > - items enclosed within angle brackets are arguments

1L70

- - .

* - - 7 , .

[] - items enclosed in square brackets are optional
<ea> - effective address
<ev> - effective value

11. Data Format
AMASM emits object code and directives using AM I/O modules. The

object module is, thus, directly readable by AM. A linker and loader may be
written either in a high level language, or AM assembler.

The data and object module formats described below are a direct reflection of
AM's tagged architecture. The following conventions will apply:

- All numbers show are in hexadecimal.

- The letter "H" is a place holder signifying any 4-bit value.

- The letter "D" is a place holder signifying any 32-bit value.

- The letter "P" is a place holder signifying a 32-bit pointer.

- The general form of a typed value is

t t va
where "tag" is a 16-bit type field, and "val" is either an 8 to 32-bit value or

a 32-bit pointer.
Note the following:

- Character string atoms and values have a 16-bit size field inserted after the
type field which indicates the number of characters in the value field
(including the terminating null). This size field is omitted in memory (since
it is not needed) and replaced by a pointer to the string.

- Instruction values have a 32-bit pointer following the type field, which
points to an array of values. The first value is the opcode followed by the
operands. The number of operands is encoded in the opcode.

- Form values have a 32-bit pointer to a form header. The header contains
the form's rectangle and a pointer to the cmap which is an array of colors.
The length of the cmap is determined from the form's rectangle.

- Font values have a 32-bit pointer to a font header. The header contains
the font's rectangle and a 128 member array of cmap pointers.

A number of the formats listed below are not described elsewhere in this
manual since they are either not accessible to the programmer, or are implied by
context.

11.1. Atom Formats

boolean - 0

natural - 0002 I
integer - 0003 H

character- 0

character string - [P_] H .

171

.... .. *.*.. . . .*.*~
."° o. " - ." -.' ''.''" 7 '" - -''''o - """ .'. , "... " ". ;. .-. " -.- ''''

q

intensity - I K

color - I

point - r008 I

rectangle-

form- 0 r [[- cmap array -

font- IJ I 128s -

ptblt - 0 0 DDDD DDDD DDDD HHJ

memory address - 03 [I
register address - 003

display register address - 0 .-

monitor attribute - jJ
stack address - 0034]

file address - 0 H

monadic operator - H

dyadic operator- 0 H
triadic operator - 0 H

quadadic operator - 0 H

sexadic operator - 0 H

octadic operator- 0 H

relational operator - 0 H

boolean comparator - 0 J HHHH

11.2. Value Formats

boolean - 021 M

natural - 0 H

integer - 0 J HHHHJ

character - 04- MM

character string - 05 r .-

intensity - 0061

color - 0 HH HH

point - 020 M -

rectangle - r209

form- 0 - - cmap array-

font- 020 I -128 s-
ptblt - 020 IDDDD DDDD DDDD

memory address - 0230-

172

register address - 02[311
display register address - 0232

monitor attribute - 0233 r

stack address - 0 rI

file address - 0 H

instruction - 0 r zero or more operand atoms

11.3. Object Module Format
The structure of an object module is very simple. The only object always

found is a leading org directive. Next, if any symbols were declared global or
external in the source module, a pseudo instruction will be emitted for each such
symbol. The rest of the file contains executable and pseudo instructions emitted
as they occur in the source.

12. Assembler Directives
AMASM recognizes the following directives:

equ - equate
org - absolute origin
rorg - relative origin
extern - external symbol

_. globl - global symbol
trace - trace execution
ds - define storage
dc - define constant

Directives do not produce code which will be executed by AM, but they may
cause linker/loader instructions to be emitted. The meaning and syntax of each
directive is described in the following pages.

173

.-°
.

EQU Equate EQU

Syntax:

<name> equ <equivalence>

where:
<name> is any legal identifier
<equivalence> is any atom or typed value

Description:
The symbol <name> is assigned the value of <equivalence>. Elsewhere in

the source module, the symbol may be used in place of a literal value of the same
type as <equivalence> using the following syntax:

- - If the symbol represents a memory address atom, the symbol may be used
directly.

- If the symbol represents a typed (immediate) value, it must be enclosed in
curly braces "{" "}".

- If the symbol represents an integer or natural atom, it must be preceded by
a pound sign "#".

Example:

progseg equ (0:0)
dataseg equ (1:100)
offset equ 10
datafile equ {file,3}

org progseg
move {addr,data},r(0:0)
move {int,100},r(0:0) @#offset

push {string,"test.dat" },s(0)
push {datafile}, s(O)
push {int,O},s(O)
push {int,0},s(O)
open s(O)
stop

org dataseg
data ds 100

"progseg" and "dataseg" are equated to memory address atoms.
"offset" is equated to the integer atom 10.

"datafile" is equated to the file address value {file,3}.

174

Format:
equ does not cause an emission.

175

ORG Absolute Origin ORG

Syntax:

org [M]

Description:
The location counter is reset to M, if specified; otherwise it remains

unchanged. All memory addresses and labels specified after an org directive up
to the next org or rorg directive not explicitly expressed as displacements are
treated as absolute addresses. Code generated after an org directive up to the
next org or rorg directive is not relocatable.

Example:

org

move (0:0),r(0:0)

org (1:0)
data ds {int,100},{nat,0}

Format:

176

.......................................

.........'...'.....'.......-....-..............'.....".".....'...-'.".-........".-....-.."...*."..'." "-.. .'" f." .".. -" "-. ." ,

RORG Relative Origin RORG

Syntax:
rorg [Mi

Description:
The location counter is reset to M, if specified; otherwise it remains

unchanged. All memory addresses and labels specified after a rorg directive up
to the next org or rorg directive are computed as displacements. Code
generated after a rorg directive up to the next org or rorg directive is
relocatable (program counter independent).

Example:
rorg

move {int,100},data
jsr staff
stop

data ds 10

In the above example, the move would be emitted using destination
program counter relative addressing.

Format:

0250] 18011 020M

177

...............

EXTERN External Symbol EXTERN

*; Syntax:
extern <name>...

where:
<name> is any legal identifier

Description:
The list of symbols is made visible to the current module and are assumed to

be defined elsewhere. An error is flagged if a symbol in the list is not referenced
somewhere within the current module. It is also an error for any symbol in the
list to be defined within the current module.

Example:
extern expon

push {int,100},s(O)
jsr expon,s(O)

Format:
For each symbol declared external, an extern pseudo op is emitted, followed

by a string containing the symbol.

178

_ . - . ,.,, ... , .,....,...,...,...-,,..,..,-.,,,.,,,.....*

GLOBL Global Symbol GLOBL

Syntax:

globI <name>...

where:
<name> is any legal identifier

Description:
The list of symbols is made visible to external modules. Each <name> in

the list must be defined as a memory address somewhere within the current
module.

Example:

globI test,data

test:
move (0:0),r(0:0)
stop

data ds 10

"test" and "data" are made visible to other modules.

Format:
For each symbol declared global, a glob] pseudo op is emitted, followed by a

string containing the symbol, followed by a memory address representing the
value of the symbol.

025018 H 0230

179

- - -'-- -- - , hm ... "-

TRACE Trace Execution TRACE

Syntax:
trace <flag> ,<toggle>

where:
<flag> is "-t" for normal trace and "-x" is for extended trace
<toggle> is "+" for on and "-" for off

Description:
A trace of the programs execution is available in two modes, normal and

extended. The normal mode traces the main function calls and the major paths
through them. The extend mode include the normal trace plus memory
allocation calls and creation of temporary values. The trace directive may be
selected in the command line when AM is invoked, or embedded in the source
code to enable trace over selected portions of the program.

Example:

progseg equ (0:0)
org progseg
move {addr,data},r(0:0)
trace -t,+

move {int,100},r(O:O)@
trace -t,-
push {int,O},s(O)
stop

data ds 100

Format:

180

DS Define Storage DS

Syntax:

[<name>] ds N [V...]
[<name>] ds [N] V...

where:
<name> is an optional identifier

ds permits a list of atoms to follow the type keyword of each value.

Description:
ds allocates storage for values starting at the current value of the location

counter.

- If N is specified and N is greater than or equal to the number of values in
the list, space for N values is allocated and the location counter is
incremented by N.
- If N is specified and N is less than the number of values in the list, N is
ignored.

If N is not specified, the amount of storage allocated is equal to the
number of values in the list. The location counter is incremented by this
number.

If a value list is specified, the allocated cells will be initialized to those
values, beginning with the first.

- Cells allocated but not initialized are considered to hold undefined values.
It is an error to attempt to read an undefined value.

Example:
datal ds 10
data2 ds 10 (int,100),{nat,0,20,40}
data3 ds {char,'a','b'}

ds {string,"this is a sting value"}

The first ds allocates 10 values and leaves them undefined. "datal" may be
used to index into those values.

The second also allocates 10 values, but initializes the first to the integer
100, and the next 3 to the naturals 0, 20, and 40. The last 6 values are left
undefined.

The third ds shown allocates 2 character values.

The fourth allocates a single string value. No identifier was specified.

Format:
A typed value is emitted for each value in the list. In addition, ds will emit

an org pseudo op (see org) whenever the number of values in the value list is
less than N.

181

- naH mimil nDHIdi i mm .~

DC Define Constant DC

Syntax:

[<name>] dc V...

where:
<name> is an optional identifier

dc permits a list of atoms to follow the type keyword of each value.

Description:
dc allocates and initializes storLge from a list of values starting at the

current value of the location counter.

Example:
data3 dc {char,'a','b'}

dc {string,"this is a string value"}

The first ds shown allocates 2 character values.

The second allocates a single string value. No identifier was specified.

*• Format:
A typed value is emitted for each value in the list.

182

.

,J

.. *.-v-....*....* . . *

13. Addressing Modes
AM supports 11 addressing modes:

d - display register direct
r - register direct
ri - register indirect
rid - register indirect with displacement
ridn - n-level register indirect with displacement
m - memory absolute
mi - memory indirect
pcr - program counter relative
i - immediate value
a - immediate atom
s - stack direct

Like other more familiar processors, not all AM instructions can use all of the
addressing modes.

In addition, AMASM supports address expressions, which provides a
rudimentary indexing capability.

13.1. Display Register Direct
The form operand is in the display register.

Syntax: D

Format:

13.2. Register Direct
The operand is in a register.

Syntax: R

Format:

13.3. Register Indirect
The address of the operand is in a register.

Syntax: R@

R - holds the operand address

Format:

13.4. Register Indirect with Displacement
The address of the operand is the sum of the address in a register and an

integer displacement.

Syntax: ROI

R - holds a base address

183

. ..', .", '. .'." . -...,''''. ..'''.: ,.' ... ''' "'''.. "'''...: € .', :,....- ",'. ' .:.".-,'..','...... .. .'.... .- ,:.',,

I - an integer displacement

Format:

0231 M 0203 W

13.5. N-level Register Indirect with Displacement
The address of the operand is the sum of the address obtained from the nth

link in a chain of dynamic links and an integer displacement.

Syntax: RNI

R - holds the current frame pointer
N - a non-negative frame reference
I - an integer frame displacement

.(RN@I is equivalent to ROI)

Format:

13.6. Memory Absolute

Syntax: M

M - the operand address

Format:

13.7. Memory Indirect
The address of the operand is in a memory cell.

Syntax: M@

M - a pointer to the operand address

Format:

13.8. Program Counter Relative
The address of the operand is the sum of the program counter and an integer

displacement.

Syntax: M

M - the operand address

The specified address must be in the same module as the instruction. The
", assembler automatically computes the displacement. Program counter relative is

specified for a block by placing a rorg directive at the top of the block.

Format:

.18

"" 184

.°..

"..-..- -..-. -........-..-....-.... . • , ..-.. ..-..... - ..-.....-...- - . : -. ,.'.. . ,'.'..

13.9. Immediate Value
The operand is an immediate value.

Syntax: V

V - any typed value

Format:

ta va

13.10. Immediate Atom
The operand is an atom.

Syntax: A

A - usually an integer or natural

Format:

13.11. Stack Direct
The operand is a stack.

Syntax: S

Format:

14. Instruction Set
The AM instruction set is simple but powerful. The rigid data types make it

meaningless to specify operations like shift and mask, thus removing some of the
programmer's freedom to muck with data in arbitrary ways. The tagged
architecture will detect errors like jumping to data, or accessing instructions as
data, as well as the more common bounds checking performed by runtime
libraries.

14.1. Machine Errors
The following errors are detected by AM during loading and execution:
- attempt to execute a non-instruction
- attempt to execute an illegal instruction
- memory segment not defined
- memory segment overflow
- memory segment underflow
- register segment not defined
- register segment underflow
- register segment underflow
- display register segment not defined
- stack segment not defined
- undefined monitor attribute
- <file> contains unresolved references

185

[..

- atte apt to convert negative int to nat
- no predecessor to zeronat
-no predecessor to minintens
- no successor to maxintens
- addition illegal with nullintens
- subtraction illegal with nullintens
- gtintensi illegal with nullintens
- Itintens illegal with nullintens
- geintens illegal with nullintens
- leintens illegal with nullintens
- illegal color definition
- form is not correct size for font

icon is undefined
- unknown operator to applymop

unknown operator to applydop
- unknown operator to applytop
- unknown operator to applyqop
- unknown operator to applysop
- unknown operator to applyoop
- unknown operator to applyrop
- unknown operator to applybop
- type error - GT
- type error - GE
- type error - LT
- type error - LE
- no more segment available
- attempt to free invalid memory segment
- attempt to free non-allocated segment
- stack empty
- stack overflow
- stack underflow
- file already. open
- unable to close file
- unable to open <file>
- file already closed
- file not open
- file not open for reading
- file not open for writing
- reading file, type not recognized
- error reading file
- writing file, type not recognized
- invalid memory segment
- memory segment not allocated
- invalid memory address
- invalid register segment
- invalid register address

186

. .o . * . * *.. . ' .oo * *. .. *. D o *- .* . - _ '***

.° B' •* -. ' - • ". -,m Im "l . * ° .' - . * m . . - - - *° **. . • o °

- invalid stack segment
- invalid file descriptor
- attempt to return head of null string
- value not of type bool
- atom not of type bool
- value not of type int
- atom not of type int
- value not of type nat
- atom not of type nat
- value not of type char
- atom not of type char
- value not of type string
- atom not of type string
- value not of type ilev
- atom not of type ilev
- value not of type colr
- atom not of type colr
- value not of type pnt
- atom not of type pnt
- value not of type rct
- atom not of type rct
- value not of type form
- atom not of type form
- value not of type font
- atom not of type font
- value not of type ptblt
- atom not of type ptblt
- value not of type mad
- atom not of type mad
- value not of type rad
- atom not of type rad
- value not of type dad
- atom not of type dad
- value not of type mattribute
- atom not of type mattribute
- value not of type sad
- atom not of type sad
- value not of type file
- atom not of type file
- value not of type mop
- atom not of type mop
- value not of type dop
- atom not of type dop
- value not of type top
- atom not of type top
- value not of type qop

187

... A

- atom not of type qop
- value not of type sop
- atom not of type sop
- value not of type oop
- atom not of type oop
- value not of type rop
- atom not of type rop
- value not of type bop
- atom not of type bop
- value not of type instr
- atom not of type instr
- type error

All machine errors are fatal.

14.2. Assembler Errors
AMASM will detect and report the following errors:

- symbol not an address
- symbol defined locally
- <symbol> does not match declared type
- relative memory indirect not permitted
- symbol not a value
- symbol not an integer
- intensity value exceeds range
- symbols declared but not referenced
- displacement from external addresses not permitted
- relative addressing not permitted between segments
- out of symbol space
- symbol declared external
_ symbol already defined
- symbol not of same type
- impossible value for given type
- syntax error

Assembler errors are not fatal, but will prevent the creation of the object
module and. usually, the cross-reference file.

14.3. AM Operations
AM supports a useful set of monadic, dyadic, triadic, quadadic, sexadic.

octadic, relational and test operators. These operators are to be used with the
monad, dyad, triad, quad, sexad, octad, if and test instructions. The
mnemonics/symbols for each operator along with the data types to which each
may be applied are described below.

188

,..•....-..... ,...............-......-..-,. ..

14.3.1. Monadic Operators (MOP's)

not - boolean negation

not accepts a boolean argument and returns its negation

abs - absolute value

abs accepts an integer argument and returns is absolute value

ntoi - natural to integer

ntoi accepts a natural argument and converts it to an integer

iton - integer to natural

iton accepts an integer argument and converts it to a natural

len - string length

len accepts a string argument and returns its length as a natural number.

make - make a string

This operator accepts a character argument and returns a string of length 1.

head - the head of a string

This operator accepts a string argument and returns the character at its
head. It is an error to take the head of an empty string.

tail - the rest of a string

tail accepts a string argument and returns a string containing all but the
first character. The tail of an empty string is the empty string.

rcmp,gcmp,bcmp - color components

rcmp, gemp and bcmp accept a color argument and return the respective
red, green, or blue component of the color.

xcord,ycord - point coordinate

xcord and ycord accept a point argument and return the respective
coordinate integer.

origincorner - rectangle corner points

These operators accept a rectangle argument and return a corner point.
Origin returns the lower left and corner the upper right.

xdim,ydim - rectangle dimensions

xdim and ydim accept a rectangle argument and return the respective
dimension integer.

189

b ,7

newfrm - new form

newfrm accepts a rectangle argument and returns a new blank form whose
rectangle is the same as the input rectangle.

farea - form area

farea accepts a form argument and returns its rectangle.

gblts,gbltd,gbltc - get ptblt rectangles

These operators accept a ptblt argument and return the specified rectangle.
gblts returns the source, gbltd returns the destination, and gbltc returns
the clipping rectangle

gbltr - get ptblt rule

gbltr accepts a ptblt argument and returns the natural that represents the
copy rule.

newfnt - new font

newfnt accepts a rectangle argument and returns an empty font whose icon
rectangles are the same as the input rectangle.

rctfnt - rectange of font

rctfnt accepts a font argument and returns its rectangle.

lenfnt - length of font

lenfnt accepts a font argument and returns the number of icons in it as a
natural.

14.3.2. Dyadic Operators (DOP 's)

andor

and and or accept two boolean arguments and return a boolean result.

add,sub,mul,div,mod - computational operators

These operators accept integer, natural or intensity arguments (both of the
same type) and return a result of that type. Divide by zero returns an error.
div discards any remainder, mod returns the remainder. mul. div and
mod do not apply to intensity arguments.

cat - string concatenation

cat accepts two string arguments and returns the concatenation of the first
onto the second.

100

loc - point location

loc accepts two integer arguments and returns the defined point.

Usage - loc(x,y) where x is the x coordinate integer and y is the y
coordinate integer.

area - rectangle definition

area accepts two unordered point arguments and returns the defined
rectangle.

inrct - point in rectangle

inrct accepts a point and a rectangle argument, checks if the point is inside
the area of the rectangle, and returns the boolean result.

Usage - inrct(p,r) where p is a point and r is a rectangle.

intrct - rectangle intersection

intrct accepts two rectangle arguments and returns the intersection
rectangle.

putrct - put rectangle at

putrct accepts a poirt and a rectangle argument and returns the rectangle
with the same area as the input and its origin at the point argument.

Usage - putrct(p,r) where p is a point and r is a rectangle.

mapsp,mapps - conversion operators

These operators convert points between point coordinates and font spot
coordinates. They accept a point and a font argument and return a point.
mapsp takes a spot coordinate and based on the font size returns its origin
point, e. g., the origin point of spot (2.3) for a 10 by 10 font is point (20.30).
mapps takes a point and returns the font spot that it falls inside. e. g.. the
point (21.31) for a 10 by 10 font is in spot (2.3).

Usage:

- mapsp(f.p) where f is a font and p is a point.

- mapps(f.p) where f is a font and p is a point.

gcolor- get color

gcolor accepts a point and a form argument and returns the form's color at
that point. bp

Usage - gcolor(p.f) where p is a point and f is a font.

"-: 191

.o.

7 AD-RI59 896 THE FOR AL SPECIFIC TION OF
VISU L DISPLY DEVICE:

3.13
DESIGN AND INPLENENTATION(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA J E HUNTER JUN 85

UNCLSSIFIED F/O 14/2 NL

I flllllfl.l.l

,Monolsflsfl.onf~f

EEmE h

*1 •

, 1

MICROCOPY RESOLUTION TEST CHART

NATIOftAL BUREAU OF STANDAROS -9 3- A

4

. . -,...... . , . . , . o-'.. . ..- - -. , . -..- --_ . ,.. . .. -. ,. . .. --.... ,. -. '.,. , : . . .:.. .. ,

fill - fill the form

fill accepts a color and a form and returns the form with all its points set to
the color argument.

Usage - fill(cf) where c is a color and f is a font.

sblts,sbltd,sbltc - set ptblt rectangles These operators accept a rectangle
and a ptblt argument and return the ptblt with the specified rectangle set to the
rectangle argument.

sblts sets the source, sbltd sets the destination, and sbltc sets the clipping
rectangle

Usage - sbltjr,b) where r is a rectangle and b is ptblt.

sbltr - set ptblt rule

sbltr accepts a natural and a ptblt argument and returns the ptblt with
copy rule set to the natural argument.

Usage - sbltr(n,b) where n is a natural and b is ptblt.

infnt - is icon in font

infnt accepts a natural and a font argument and returns a boolean result
based on whether the icon indexed by the natural argument is defined.

Usage - infnt(n,f) where n is a natural and f is a font.

dfnt - delete icon

dfnt accepts a natural and a font argument and returns the font with the
indexed icon deleted.

* Usage - dfnt(n,f) where n is a natural and f is a font.

gfnt - get icon

gfnt accepts a natural and a font argument and returns the form of the icon
indexed.

Usage - gfnt(n,f) where n is a natural and f is a font.

14.3.3. Triadic Operators (TOP's)

dcolor - define color

dcolor accepts three intensity arguments and returns the defined color.

Usage - dcolor(r,g,b) where r is the red intensity, g is the green intensity,
and b is the blue intensity.

poffst

poffst accepts a point and two integer arguments and returns the point that
is offset from the point argument by the integer arguments.

192

* *-.. t. -. - -7 - T -T , T .* 7%

Usage - poffst(x,y,p) where x and y are the offset integers and p is the
reference point.

sftrct - shift rectangle

sftret accepts a rectangle and two integer arguments and returns the
rectangle formed by offsetting its origin by the integer arguments.

* Usage - sftrct(x,y,r) where x and y are the offset integers and r is the
reference rectangle.

scolor - set color

scolor accepts a color, a point and a form argument and returns the form
with its point argument set to the color argument.

Usage - scolor(p,c,f) where p is the point, c is the color, and f is the font.

invfrm - inverse form

invfrm accepts a form and two color arguments and returns the form with
its fore and background colors inversed by the color arguments.

Usage - invfrm(fg,bg,frm) where fg is the new foreground color, bg is the
new background color, and frm is the form to be inversed.

sfnt - set font

- sfnt accepts a natural, a form, and a font and returns the font with the new
icon inserted that is defined by the form and natural arguments.

Usage - sfnt(frm,n,fnt) where frm is the icon form, n is the index, and fnt is
the font.

14.3.4. Quadadic Operaterrs (QOP's)

foffst - font offset

foffst accepts two integer arguments as an offset, a point argument and a
font argument. It returns the spot origin point based on the spot coordinate
offset from the point argument, e. g., a font size of 10 by 10 which is offset
2,3 from point (5,5) returns the spot origin point at (25.35).

Usage - foffst(x,y,fnt,p) where x and y are the offset integers, fnt is the
basis font, and, p is the reference point.

cpfrm - form copybit

cpfrm merges a source and a mask form with a destination form using the
parameters in ptblt. It accepts a ptblt and three form arguments and
returns the resultant form.

Usage - cpfrm(pb,s,m,d) where pb is the governing ptblt, s is the source
form, m is the mask form, and d is the destination form.

193

..

14.3.5. Sexadic Operators (SOP's)

drawin - draw line

drawin draws a line from point y to point z on the destination form, using
the specified brush and mask forms. It accepts two point arguments, three
form arguments and a ptblt argument and returns a form.

Usage - drawln(x,y,pb,b,m,d) where y is the start point, z is the end point,
pb is the ptblt, b is the brush form, m is the mask form, and d is the
destination form.

cpfnt - copy font

cpfnt copies a font icon to a designated point on the destination form. It
accepts a natural and a font argument which defines the source form, a point

* argument for the target location, two form arguments and a ptblt argument
and returns the resultant form.

Usage - cpfnt(p,pb,n,fnt,m,d) where p is the target location, pb is the ptblt,
n is the font index, fnt is the font, m is the mask form, and d is the
destination form,

14.3.6. Octadic Operators (OOP's)

invfnt - inverse font

invfnt performs the same operation as cpfnt except that the font icon is
combined with inverse coloring. It accepts a the same arguments plus two
color arguments and returns the resultant form.

Usage - invfnt(fg,bg,p,pb,n,fnt,m,d) where fg is the new foreground color,
bg is the new background color, p is the target location, pb is the ptblt, n is
the font index, fnt is the font, m is the mask form, and d is the destination
form,

14.3.7. Relational Operators (ROP 's)
The relational operators are:

-- - equality
> - greater than
>= - greater than or equal to
< - less than
<-- -- less than or equal to
._- - not equal to

They may be applied to int, nat, char, string, intens, and pnt.
If == or != are applied to arguments of different types, -f returns false, !-

returns true. This applies also to types not listed above. >,>=, and <= return
an error if their arguments are not of the same type.

Relational operators return a boolean result.

194

-. -. ' -. . ..- .- -- - ."'. .- ' :..... . . " .-.-.. ' ...-. '., '.--.. ..-. .- ', ---. ." ,-.J. ,

• . 14.3.8. Test Operators (BOP's)
These operators permit the programmer to test a cell for type before

attempting to access it. These are necessary because AM considers it a fatal
error to read from an undefined cell or apply an operatoi of one type on data of
another. The test operators are the same as the type mnemonics, plus a
mnemonic for testing undefined values:

bool
nat
int
char
string
intens
color
pnt
rct
form
font
ptblt
instr
addr
file
undef

Test operators accept a typed value and return true if the value is of the
specified type, false otherwise. undef returns true if a value is undefined, false
otherwise.

.o.

* --

OFFSET Offset an Address OFFSET

Syntax:

offset 1,11

R must contain a memory address value

Operation:

R + I--> R

Description:
The sum of I and the address in .R is stored in R.

Example:
offset 20,r(0:0)

Addressing Modes:

I: a

R: r

Format:

0250 3810operands

''go

LINK - Link Frame and Allocate LINK

Syntax:
link R,N

Operation:

RO -> address@
address -> R

Description:
A segment of N cells is allocated from the heap. The value stored in R is

save at the base address of the segment. The segment base address is returned in
R.

. This instruction is designed to create dynamic links for local environments.

Example:

proc: link r(O:5),1
move r(O:5)204,r(O:O)
add {int,100},r(O:O)
move r(0:O),r(O:5)2c@4
unlink r(0:5)
rts

Above is an example of uplevel addr46ssing.

Addressing Modes:

R: r

N: a

Format:

020P 1 loperands

197

UNLINK Unlink and Free UNLINK

Syntax:

unlink R

* Operation:

Description:
The value in the base address of the segment pointed to by R is returned in

R. The segment is freed.

Example:

-proc: link r(O:5),l
move r(O:5)204,r(O:0)
add {int,100},r(O:O)
move r(O:O) ,r(O:5)204
unlink r(0:5)
r-ts

Addressing Modes:

R: r

Format:

0250 2812operand

GD WIN ... Get Display- Window Location GD WIN

Syntax:

gdwin D,R

Operation:

D D--> R

Description:
The value of the display window origin point at D is stored in R.

Example:
gdwin d(0:0) ,r(0:0)'

Addressing Modes:

R: r

Format:

025 l 83operands

log

SD WIN Set Display Window Location SD WIN

Syntax:

sdwin R,D

R must contain a point value

* Operation:

Description:
The display window origin point, at D is set to the point value in R.

Example:
sdwin r(0:0) ,d(0:O)

Addressing Modes:

R: r

Format:

0250 3814operands

200

GMTR Get Monitor Attribute GMTR

Syntax:

gmtr T,R

Operation:

Description:
The T value is stored in R.

Example:

gmntr -b,r(0:O)

Addressing Modes:

R: r

Format:

0250~fl{281...21 }operand

201

SMTR Set Monitor Attribute SMTR

Syntax:

smtr R,T

R must contain a value appropriate for the selected attribute.

Operation:~R--> T

Description:
The T value is set to the value in R

Example:

smtr r(0:O),-d

Addressing Modes:

R: r

Format:

0250 l[fl{ 281 ...2824 } operand

202

-~~~~~~~~~~~ T .- . * ~ * ~ ~ - . -

MONADS -Monadic Short MONADS

Syntax:

<mop> C

where:
<mop> is a monadic operator

Operation:

<mop> C -- > C

Description:
The operator corresponding to <mop> is applied to C and the result stored

in C.

Example:

not r(0:0)

Addressing Modes:

C: r,d

Format:

0250 3830operan

203

MONADL Monadic Long MONADL

Syntax:

<mop> Cx,Cy

where:
<mop> is a monadic operator

Operation:

<mop> Cx -> Cy

Description:
The operator corresponding to <mop> is applied to Cx and the result stored

in Cy.

Example:

not r(0:O),r(1:O)
farea d(0:0),r(0:O)

Addressing Modes:

Cx: r,d

Cy: r,d

Format:

0250 4831operands

204

I A

MONADLI -Monadic Long Immediate MONADLI

Syntax:

<mop> V,C

where:
<mop> is a monadic operator

Operation:

<mop> V -> C

Description:
The operator corresponding to <mop> is applied to the immediate value V

and the result stored in C.

Example:
not {addr,flag},r(1:0)
newfrm {addr,rctsize}4d(0:0)

Addressing Modes:

V: i

C: r,d

Format:

0250 4832operas

205

DYADS Dyadic Short DYADS

Syntax:

<dop> Cx,Cy

where:
<dop> is a dyadic operator

Operation:

Cy <dop> Cx -> Cy

Description:
The operation corresponding to <dop> is applied to the operands and the

result stored in Cy.

Example:

and r(0:0),r(0:1)
fill r(0:0),d(O:O)

Addressing Modes:

Cx: r,d

Cy: r,d

Format:

02500 [j! 483 loprands

206

I}YADSI Dyadic Short Immediate DYADSI

Syntax:

<dop> V,C

where:
<dop> is a dyadic operator

Operation:

C <dop> V -- > C

Description:
The operation corresponding to <dop> is applied to the operands and the

resu~lt stored in C.

Example:

sub {int,100},r(O:1)
fill {color,#(10,1, 10)),d (:0)

Addressing Modes:

V: i

C: r,d

Format:

0250 l3484operands

207

DYADL Dyadic Long DYADL

Syntax:

<dop> Cx,Cy,Cz

* where:

<dop> is a dyadic operator

Operation:

Cy <dop> Cx -> Cz

Description:
The operation corresponding to <dop> is applied to Cx and Cy and the

result stored in Cz.

Example:

add r(0:0),r(0:1),r(0:3)
gcolor r(0:0),d(0:0),r(0:1)

<dop> Cx,Cy,Cy is equivalent to <dop> Cx,Cy

Addressing Modes:

Cx: r,d

Cy: r,d

x Cz: r,d

Format:

0250 4835operands

208

* 7

DYADLI Dyadic Long Immediate DYADLI

Syntax:

<dop> V,Cx,Cy

where:
<dop> is a dyadic operator

Operation:

Cx <dop> V -> Cy

Description:
The operation corresponding to <dop> is applied to V and Cx and the result

stored in Cy.

Example:
add {int,100},r(0:0) ,r(0:)
gcolor {pnt,(0,0)},d(O:O),r(O:0)

<dop> V,Cx,Cx is equivalent to <dop> V,Cx

* Addressing Modes:

* V: i

Cx. r,d

Cy: r,d

Format:
0250j~j 836operanas

* 200

TRIAD S Triadic Short TRIAD S

Syntax:

<top> CX,Cy,Cz

where:
* <top> is a triadic operator

Operation:

<top> CX,Cy,Cz -> Cz

Description:
The operation corresponding to' <top> is applied to the operands and the

result stored in Cz.

Example:

sfnt r(O:0),r(0:1),r(0:2)

Addressing Modes:

Cx: r,d

Cy: r,d

Cz: r,d

Format:

0250 4837oprands

* 210

TRIADL Triadic Long TRIADL

Syntax:

<top> Cw,CX,Cy,Cz

* where:
<top> is a triadic operator

Operation:

<top> Cw,Cx,Cy -- > Cz

Description:
The operation corresponding to <top> is applied to the operands and the

result stored in Cz.

Example:

scolor r(O:O) ,r(0J) ,d(0:2) ,r(0:3)

Addressing Modes:

Cw: r,d

Cx: r,d

Cy: r,d

Cz: r,d

Format:

025 F4838 operands

211

S..JC .--- - P- --

QUADS Quadic Short QUAD)S

Syntax :

<qop> Cw,Cx,Cy,Cz

where:
<qop> is a quadadic operator

Operation:

<qop> Cw,Cx,Cy,Cz -> Cz

Description:
The operation corresponding to <qop> is applied to the operands and the

result stored in Cz.

Example:

cpfrrn r(0:O),d(0:O),r(0:1),d(O:1)

Addressing Modes:

Cw: r,d

Cx: r,d

Cy: r,d

Cz: r,d

Format:

0250 4839operands

212

., * -.. -. - . -o.... . _- . .. 5 - - 77

QUADL Quadic Long QUADL

Syntax:

<qop> Cv,Cw,Cx,Cy,Cz

where:
<qop> is a quadadic operator

Operation:

<qop> Cv,Cw,Cx,Cy -- > Cz

Description:
The operation corresponding to <qop> is applied to the operands and the

result stored in Cz.

Example:

cpfrm r(O:0),r(0:1),r(0:2),r(0:3),d(0:0)

Addressing Modes:

Cv: r,d

Cw: r,d

Cx: r,d

Cy: r,d

Cz: r,d

Format:

020 -4-83-loperands

213

.

.

77 - OW- .-- L

SEXADS Sexadic Short SEXADS

Syntax:

<sop> Cu,Cv,Cw,Cx,Cy,Cz

* where:
<sop> is a sexadic operator

Operation:

<sop> Cu,Cv,Cw,CX,Cy,CZ - Cz

Description:
The operation corresponding to <sop> is applied to the operands and the

result stored in Cz.

Example:

drawin r(0:O),r(0:1),r(0:2),r(0:3),r(O:4),d(O:0)

Addressing Modes:

Cu: r,d

Cv: r,d

Cw: r,d

Cx: r,d

Cy: r,d

Cz: r,d

Format:

[025-0] Tj 483 operand

214

SEXADL - Sexadic Long SEXADL

Syntax:

<sop> Ct,Cu,CV,Cw,Cx,Cy,Cz

where:
<sop> is a sexadic operator

Operation:

<sop> Ct,Cu,Cv,CW,CX,Cy-> Cz

Description:
The operation corresponding to <sop> is applied to the operands and the

result stored in Cz.

Example:

cpfnt r(0:0),r(0:1),r(O:2),r(O:3),r(O:4),d(O:O),d(0:1)

Addressing Modes:

Ct: r,d

Cu: r,d

Cv: r,d

Cw: r,d

Cx: r,d

Cy: r.,d

Cz: r,d

Format:

0250 ~operands

215

OCTADS Octadic Short OCTADYS

Syntax:

<oop> Cs,Ct,Cu,CV,Cw,CX,Cy,Cz

where:
<oop> is a octadic operator

Operation:

<oop> CS,Ct,CU,CV,CW,CX,Cy,Cz -- > Cz

Description:
The operation corresponding to <oop> is applied to the operands and the

result stored in Cz.

Example:

invfnt r(O:O),r(O:1),r(0:2),r(0:3),r(0:4),r(0:5),r(0:6),d(0:1)

Addressing Modes:

Cs: r,d

Ct: r,d

CU: i,d

Cv: r,d

Cw: r,d

* Cx: r,d

Cy: r,d

Cz: r,d

Format:

025 483M loprands

216

. .7 .- :

OCTADL Octadic Long OCTADL

Syntax:

<oop> Cr,Cs,Ct,Cu,Cv,Cw,Cx,Cy,Cz

where:
<oop> is a octadic operator

Operation:

<oop> Cr,Cs,Ct,Cu,Cv,Cw,Cx,Cy -- > Cz

Description:
The operation corresponding to <oop> is applied to the operands and the

resualt stored in Cz.

Example:

invfnt r(O:0) ,r(0:1),r(0:2) ,r(O:3),r(0:4) ,r(0:5),r(0:6) ,d(O:0) ,d(0:i)

Addressing Modes:

Cr: r,d

Cs: r,d

Ct: r,d

Cu: r,d

Cv: r,d

Cw: r,d

Cx: r,d

Cy: r,d

Cz: r,d

Format:

025 I 483 operands

217

77-7.-~ TA Tv 13; V 7-3Y 13 -J I '. - -V J.-x~ V".. -... ,-

MOVE Move a Value MOVE

Syntax:

move <eal>,<ea2>

where:
<ea> must be one of the addressing modes listed below

Operation:
source -- > destination

Description:
The value found at the source address is copied into the destination address.

Example:

move r(0:0) ,d(0:0)
move d(0:1),r(0:4)
move r(O:0),data
move {addr,data},r(0.20)
move {int,100},r(O:20) 0
move r(O:20)@01O,r(O:10)

data: ds 100

Addressing Modes:

<eal>: d,r,ri,rid,ridn,m,pcr,i

<ea2>: d,r,ri,rid,ridn,m,pcr

Format:

025 ~{ 850.. 84 oerands

218

PU.SH Push a Value PUSH

Syntax:

push <ea>,S

where:
<ea> is one of the addressing modes listed below

Operation:

source -- > S

Description:
The source value is pushed onto stack S. The programmer has no access to

the. stack pointer.

Example:

push {int,100},s(O)
push r(0:1O),s(1)
push d(0:0),s(1)

Addressing Modes:

<ea>: d,m,pcr,r~ri,rid,ridn,i

S:s

Format:

0250 f 88... 88)operands

219

POP Pop a Value POP

Syntax:

pop S,<ea>

where:
<ea> is one of the addressing modes listed below

Operation:

S -> destination

Description:
The source value is popped off stack S and stored at <ea>. The programmer

has, no access to the stack pointer.
It is an error to attempt to pop a value from an empty stack.

Example:

pop s(0),r(O:1)
pop s(O),data
pop s(1),d(O:O)

data: ds 1

Addressing Modes:

S:s
<ea>: d,m,pcr,r,ri,rid,ridn

Format:

0250~ 89...88 operands

220

POPX Remove the Top of a Stack POPX

Syntax:

popx S

Operation:

S -->

Description:
The top value of stack S is removed.
It is an error to attempt to remove the top of an empty stack.

Example:
I popx s(0)

Addressing Modes:

S:S

Format:

020[E 288 oeran s

221

NOP No Operation NOP

Syntax:

flop

Operation:

Description:
Does nothing.

* Addressing Modes:

Format:

222

STOP Halt Execution STOP

Syntax:

stop

Operation:

Description:
Execution is terminated.

Addressing Modes:

Format:

223

!7 I 7 o777 _7 7. P I..i.. - I . ,

JMP Jump iMP

Syntax:

imp <ea>

where:
<ea> is one of the addressing modes listed below

Operation:

<ea> -> PC

Description:
Execution resumes at <ea>.
If jmp follows a rorg directive, a jump to memory absolute is converted to a

branch.

Example:

jmp here
jmp r(0:O)

here: jmp (1:150)0

Addressing Modes:
<ea>: m,r,mi,pcr

Format:

0250 { 82... 85A4 }oerands

224

- 4 *. 4

BRA Branch BRA

Syntax:

bra <ev>

where:
<ev> is one of the addressing modes listed below

Operation:

PC + <ev> -> PC

Description:
Execution resumes at the sum of the program counter and the effective value.

Example:

bra 100

Addressing Modes:

<ev>: a,r

Format:

025[] 85...86 }operands

225

. .

4rIF If: Conditional Jump/Branch IF

Syntax:

if R <rop> <ev>,M
if <bop> <ea>,M

where:
<rop> is a relational operator
<bop> is a test operator
<ea> and <ev> are one of the addressing modes listed below

Operation:

if R <rop> <ev> then
M-> PC

if <bop> <ea> then
M --> PC

* Description:
If the comparison is true, execution resumes at M; otherwise, with the next

instruction.

Example:

move {int,10},r(O:0)
loop: if r(0:0) < {int,1},done

sub {int,1},r(0:0)
jmp loop

done: if mnt data,loop

data ds 1

Addressing Modes:

R: r

<ev>: r,i

<ea>: r,m

M: m,pcr

Format:

operands

226

774 .7 1,** -** .*%.* S h V- Ai _- -9 -- ,

IFTE -If-Then-Else: Conditional Jump/Branch IFTE

Syntax:
if R <rop> '<ev>,Mlx,My
if <bop> <ea>,Mx,My

where:
<rop> is a relational operator
<bop> is a test operator
<ea> and <ev> are one of the addressing modes listed below

Operation:

if R <rop> <ev> then
MX --> PC

else
My--> PC

if <bop> <ea> then
,Mx --> PC

else
My -- > PC

Description:
If the comparison is true, execution resumes at Mx; otherwise, at My.

Example:
if r(0:0) > r(O:1),casel,case2

stuff: move r(O:O),data
easel: jsr first,s (0)

if int r(0:O),casel
stop

case2: jsr second,s(0)
stop

Addressing Modes:

R. r

<ev>: rji

<ea>: r,m

* Mx: rn,pcr

My: m,pcr

227

Format:

operands

-.

'

-p

"". 228
-A

.5-

** o s'Y-& ~t'&-& C--§--K Y etW3:9K- -: b ,

JSR Jump Subroutine JSR

Syntax:

jsr <ea>,S

where:
<ea> is one of the addressing modes listed below

Operation:

PC-> S
<ea> -- > PC

Description:
The program counter is pushed onto stack S, and execution resumes at

<ea>.
Following a rorg directive, memory absolute is converted automatically to

program counter relative.

Example:
jsr incr,s(O)

Addressing Modes:

<ea>: m,mi,r,pcr S: s

Format:

020 { 89}operands

229

Z .

BSR Branch Subroutine BSR

Syntax:

bsr <ev>,S

where:
<ev> is one of the addressing modes listed below

Operation:

PC-> S
PC + <ev> -- > PC

Description:
The program counter is pushed onto stack S, and execution resumes at the

sum of the program counter and <ev>.

Example:

bsr r(1:0),s(0)

Addressing Modes:

<ev>: r,a S: s

Format:

025 fj 38A 8 }operands_

230

RTS Return from Subroutine RTS

Syntax:
rts S

Operation:

S --> PC

Description:
Execution resumes at the address popped from stack S.

Example:

incr: add {int,1},r(0:0)
-rts s(0)

Addressing Modes:

S: s

Format:

231

V T

OPEN .-Open a File OPEN

Syntax:

open S

Operation:

Description:
To open a file, four file parameters must be pushed on the stack, in proper

order, before the open instruction is invoked. These attributes are: a string atom
for the filename, a file descriptor atQm, an integer atom for the access mode, and
an integer atom for the data type (raw or AM typed values). The open
instruction pops these parameters off the stack and opens the file. All future file
operations are referenced by the file descriptor.

Example:
datafile equ {file,3}

push {string,"filename" },s(0)
push {datafile},s(0)
push {int,0},s(O)
push {int,0,s(O)
open s(O)

Addressing Modes:

S: s

Format:
05 28-- [0] operand

55

232
.
•

7

°.

CLOSE Close a File CLOSE

Syntax:
close S

Operation:

Description:.
The file descriptor atom must first be pushed on the stack. The close

instruction pops the stack and closes the file.

Example:
-datafile equ {file,3}

push {datafile} ,s (0)
close s(0)

Addressing Modes:

S:s

Format:
0250 ~ operand

233

~~ -. , ON . .

READ Read a File READ

Syntax:

read S

Operation:

S ->

Description:
The file descriptor atom must first be pushed on the stack. The memory

address atom for the destination buffer cell is pushed next. The read instruction
pops these parameters off the stack and puts the next file cell in the destination
buffer.

Example:
datafile equ {file,3}

push {datafile},s(O)
push {addr,data,s(O)
read s(O)

data ds 100

Addressing Modes:

S: s

Format:

d 0250 ~ operand

234

WRITE Write to File WRITE

Syntax:
write S

Operation:

S ->

Description:
The file descriptor atom must first be pushed on the stack. The memory

address atom for the source buffer cell is *Pushed next. The write instruction pops

these parameters off the stack and puts the contents of the source buffer cell into

the next file cell.

Example:

datafile equ {file,3}
push {datafile},s(O)
push f{addr,data} ,s (0)
write s(0)

data dc {string,"hello world"}

Addressing Modes:

S:s

Format:
0250 j~J 28 oerandI

235

2

LIST OF REFERENCES

Davis, D. L., Portability and Reusability through Resource Abstraction, Un-
published notes, Jan 1985.

.

Fasel, J., Programming Languages as Abstract Data Types - Definition and
Implementation, Ph. D. Thesis, Purdue University, Aug 1980.

Foley, J. D., Van Dan, A., Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Massachusetts, 1984, pp. 23-163,593-622.

Goguen, J. A., Thatcher, J. W., Wagner, E. G. and Wright, J. B., An Initial
Algebra Approach to the Specification, Correctness and Implementation of
Abstract Data Types, Current Trends in Programming Methodology IV, Data
Structuring, R. T. Yeh, ed., Prentice-Hall, Englewood Cliffs, N. J., 1978, pp.
80-149.

Goldberg, A., Robson, D., Smailtalk-80: The Language and its Implementa-
tion, Addison-Wesley, Massachusetts, 1983, pp. 329-362.

Griffin, R., An Algorithm to Test for Confluence in a System of Left to Right
Rewrite Rules, Master's Thesis, Naval Postgraduate School, Monterey, Ca.,
Dec 1984.

Guttag, J. V., Horowitz, E. and Musser, D. R., "Abstract Data Types and
Software Validation", Comm. ACM, Vol. 21, No. 12, Dec 1978, pp. 1048-
1064.

Guttag, J. V., Horowitz, E. and Musser, D. R., The Design of Abstract Type
Specifications, Current Trends in Programming Methodology IV, Data Struc-
turing, R. T. Yeh. ed., Prentice-Hall, Englewood Cliffs, N. J., 1978, pp. 60-79.

Guttag, J. V., "Notes on Type Abstraction", IEEE Transactions on Software
Engineering, Jan 1980.

Lilly, N., An Algebraic Specification Language and a Syntax Directed Editor,
Master's Thesis, Naval Postgraduate School, Monterey. Ca., Dec 1984.

Myers, G. J., Advances in Computer Architecture (2nd Edition), Wiley, New
York, 1982, pp. 17-29.

236

. ..

. *. -

Yurchak, J-, The Formal Specification of an Abstract Machine, Design and
Implementation, Master's Thesis, Naval Postgraduate School, Monterey, Ca.,
Dec 1984.

Naval Postgraduate School, Tech. Report NPS52 84-022, A Formal Method
for Specifying Computer Resources in an Implementation Independent
Manner, by Davis, D. L., Monterey, Ca., Nov 1984.

237

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Superintendent 2
Attn: Library (Code 0142)
Naval Postgraduate School
Monterey, California 93943-5100

3. Chairman (Code 52) 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Computer Technology Programs (Code 37) 1
Naval Postgraduate School
Monterey, California 93943-5100

5. Daniel Davis (Code 52) 5
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

6. Michael Zyda (Code 52) 3
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

7. Lcdr. James E. Hunter 10
1249 Homestead Dr.
Virginia Beach. Virginia 23464

8. Edward Mathewson 1
-428 Pelican Ln.
Virginia Beach, Virginia 23452

238

. a *. . .

FILMED

1-85

DTlC

